Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Professor Felix Parra Diaz

Visitor

Research theme

  • Plasma physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
felix.parradiaz@physics.ox.ac.uk
Rudolf Peierls Centre for Theoretical Physics
  • About
  • Publications

Changes in core electron temperature fluctuations across the ohmic energy confinement transition in Alcator C-Mod plasmas

Nuclear Fusion IOP Publishing 53:8 (2013) 083010

Authors:

C Sung, AE White, NT Howard, CY Oi, JE Rice, C Gao, P Ennever, M Porkolab, F Parra, D Mikkelsen, D Ernst, J Walk, JW Hughes, J Irby, C Kasten, AE Hubbard, MJ Greenwald
More details from the publisher

Stellarators close to quasisymmetry

ArXiv 1307.3393 (2013)

Authors:

Ivan Calvo, Felix I Parra, JL Velasco, J Arturo Alonso

Abstract:

Rotation is favorable for confinement, but a stellarator can rotate at high speeds if and only if it is sufficiently close to quasisymmetry. This article investigates how close it needs to be. For a magnetic field $\mathbf{B} = \mathbf{B}_0 + \alpha \mathbf{B}_1$, where $\mathbf{B}_0$ is quasisymmetric, $\alpha\mathbf{B}_1$ is a deviation from quasisymmetry, and $\alpha\ll 1$, the stellarator can rotate at high velocities if $\alpha < \epsilon^{1/2}$, with $\epsilon$ the ion Larmor radius over the characteristic variation length of $\mathbf{B}_0$. The cases in which this result may break down are discussed. If the stellarator is sufficiently quasisymmetric in the above sense, the rotation profile, and equivalently, the long-wavelength radial electric field, are not set neoclassically; instead, they can be affected by turbulent transport. Their computation requires the $O(\epsilon^2)$ pieces of both the turbulent and the long-wavelength components of the distribution function. This article contains the first step towards a formulation to calculate the rotation profile by providing the equations determining the long-wavelength components of the $O(\epsilon^2)$ pieces.
Details from ArXiV
More details from the publisher

Multi-channel transport experiments at Alcator C-Mod and comparison with gyrokinetic simulationsa)

Physics of Plasmas AIP Publishing 20:5 (2013) 056106

Authors:

AE White, NT Howard, M Greenwald, ML Reinke, C Sung, S Baek, M Barnes, J Candy, A Dominguez, D Ernst, C Gao, AE Hubbard, JW Hughes, Y Lin, D Mikkelsen, F Parra, M Porkolab, JE Rice, J Walk, SJ Wukitch, Alcator C-Mod Team
More details from the publisher
More details

Intrinsic rotation driven by non-Maxwellian equilibria in tokamak plasmas

ArXiv 1304.3633 (2013)

Authors:

M Barnes, FI Parra, JP Lee, EA Belli, MFF Nave, AE White

Abstract:

The effect of small deviations from a Maxwellian equilibrium on turbulent momentum transport in tokamak plasmas is considered. These non-Maxwellian features, arising from diamagnetic effects, introduce a strong dependence of the radial flux of co-current toroidal angular momentum on collisionality: As the plasma goes from nearly collisionless to weakly collisional, the flux reverses direction from radially inward to outward. This indicates a collisionality-dependent transition from peaked to hollow rotation profiles, consistent with experimental observations of intrinsic rotation.
Details from ArXiV
More details from the publisher
More details
More details

Kinetic effects on a tokamak pedestal ion flow, ion heat transport and bootstrap current

Plasma Physics and Controlled Fusion 55:4 (2013)

Authors:

PJ Catto, FI Parra, G Kagan, JB Parker, I Pusztai, M Landreman

Abstract:

We consider the effects of a finite radial electric field on ion orbits in a subsonic pedestal. Using a procedure that makes a clear distinction between a transit average and a flux surface average we are able to solve the kinetic equation to retain the modifications due to finite E→ × B→ drift orbit departures from flux surfaces. Our approach properly determines the velocity space localized, as well as the nonlocal, portion of the ion distribution function in the banana and plateau regimes in the small aspect ratio limit. The rapid variation of the poloidal ion flow coefficient and the electrostatic potential in the total energy modify previous banana regime evaluations of the ion flow, the bootstrap current, and the radial ion heat flux in a subsonic pedestal. In the plateau regime, the rapid variation of the poloidal flow coefficient alters earlier results for the ion flow and bootstrap current, while leaving the ion heat flux unchanged since the rapid poloidal variation of the total energy was properly retained. © 2013 IOP Publishing Ltd.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • Current page 21
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet