Convection in condensible-rich atmospheres
Astrophysical Journal IOP Publishing 822:1 (2016) 24-24
Abstract:
Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth's present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO2 is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.How to decarbonize? Look to Sweden
Bulletin of the Atomic Scientists Routledge 72:2 (2016) 105-111
Abstract:
Bringing global warming to a halt requires that worldwide net emissions of carbon dioxide be brought to essentially zero, and the sooner this occurs, the less warming our descendants for the next thousand years and more will need to adapt to. The widespread fear that the actions needed to bring this about conflict with economic growth is a major impediment to efforts to protect the climate. However, much of this fear is pointless, and the magnitude of the task, while great, is no greater than challenges human ingenuity has surmounted in the past. To light the way forward, there is a need for examining success stories in which nations have greatly reduced their carbon dioxide emissions while simultaneously maintaining vigorous growth in the standard of living. In this article, the example of Sweden is showcased. Through a combination of sensible government infrastructure policies and free-market incentives, Sweden has managed to successfully decarbonize, cutting its per capita emissions by a factor of three since the 1970s, while doubling its pre capita income and providing a wide range of social benefits. This has all be accomplished within a vigorous capitalistic framework which in many ways embodies freemarket principles better than the economy of the United States.Consequences of twenty-first-century policy for multi-millennial climate and sea-level change
NATURE CLIMATE CHANGE 6:4 (2016) 360-369
Constraints on southern hemisphere tropical climate change during the Little Ice Age and Younger Dryas based on glacier modeling of the Quelccaya Ice Cap, Peru
Quaternary Science Reviews Elsevier 125 (2015) 106-116
Abstract:
© 2015 The Authors. Improving the late Quaternary paleoclimate record through climate interpretations of low-latitude glacier length changes advances our understanding of past climate change events and the mechanisms for past, present, and future climate change. Paleotemperature reconstructions at low-latitude glaciers are uniquely fruitful because they can provide both site-specific information and enhanced understanding of regional-scale variations due to the structure of the tropical atmosphere. We produce Little Ice Age (LIA) and Younger Dryas (YD) paleoclimate reconstructions for the Huancané outlet glacier of the Quelccaya Ice Cap (QIC) and low-latitude southern hemisphere regional sea surface temperatures (SSTs) using a coupled ice-flow and energy balance model. We also model the effects of long-term changes in the summit temperature and precipitiation rate and the effects of interannual climate variability on the Huancané glacier length. We find temperature to be the dominant climate driver of glacier length change. Also, we find that interannual climate variability cannot adequately explain glacier advances inferred from the geomorphic record, necessitating that these features were formed during past colder climates. To constrain our LIA reconstruction, we incorporate the QIC ice core record, finding a LIA air temperature cooling at the ice cap of between ~0.7 °C and ~1.1 °C and ~0.4 °C and regional SSTs cooling of ~0.6 °C. For the YD paleoclimate reconstructions, we propose two limits on the precipitation rate, since the ice core record does not extend into the Pleistocene: 1) the precipitation rate scales with the Clausius-Clapeyron relationship (upper limit on cooling) and 2) the precipitation rate increases by 40% (lower limit on cooling), which is an increase about twice as great as the regional increases realized in GCM simulations for the period. The first limit requires ~1.6 °C cooling in ice cap air temperatures and ~0.9 °C cooling in SSTs, and the second limit requires ~1.0 °C cooling in ice cap air temperatures and ~0.5 °C cooling in SSTs. Our temperature reconstructions are in good agreement with the magnitude and trend of GCM simulations that incorporate the forcing mechanisms hypothesized to have caused these climate change events.Climate impact of beef: an analysis considering multiple time scales and production methods without use of global warming potentials
Environmental Research Letters Institute of Physics Publishing 10:8 (2015) 085002-085002