Mountain glaciers as paleoclimate proxies
Annual Review of Earth and Planetary Sciences Annual Reviews 49 (2017) 649-680
Abstract:
Glaciers offer the potential to reconstruct past climate over timescales from decades to millennia. They are found on nearly every continent, and at the Last Glacial Maximum, glaciers were larger in all regions on Earth. The physics of glacier-climate interaction is relatively well understood, and glacier models can be used to reconstruct past climate from geological evidence of past glacier extent. This can lead to significant insights regarding past, present and future climate. For example, glacier modelling has demonstrated that the near ubiquitous global pattern of glacier retreat during the last few centuries resulted from a global-scale climate warming of ~1°C, consistent with instrumental data and climate proxy records. Climate reconstructions from glaciers also demonstrated that the tropics were colder at the Last Glacial Maximum than was originally inferred from sea surface temperature reconstructions. Future efforts to reconstruct climate from glaciers may provide new constraints on climate sensitivity to CO2 forcing, polar amplification of climate change, and more.Observational evidence against strongly stabilizing tropical cloud feedbacks
Geophysical Research Letters American Geophysical Union 44:3 (2017) 1503-1510
Abstract:
We present a method to attribute cloud radiative feedbacks to convective processes, using sub-cloud layer buoyancy as a diagnostic of stable and deep convective regimes. Applying this approach to tropical remote-sensing measurements over years 2000-2016 shows that an inferred negative short-term cloud feedback from deep convection was nearly offset by a positive cloud feedback from stable regimes. The net cloud feedback was within statistical uncertainty of the NCAR Community Atmosphere Model (CAM5) with historical forcings, with discrepancies in the partitioning of the cloud feedback into convective regimes. Compensation between high-cloud responses to tropics-wide warming in stable and unstable regimes resulted in smaller net changes in high-cloud fraction with warming. In addition, deep convection and associated high clouds set in at warmer temperatures in response to warming, as a consequence of nearly invariant sub-cloud buoyancy. This invariance further constrained the magnitude of cloud radiative feedbacks, and is consistent with climate model projections.5 Things We Know to Be True.
Scientific American 315:5 (2016) 46-53
Dynamics of atmospheres with a non-dilute condensible component
Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences Royal Society, The 472 (2016) 20160107
New use of global warming potentials to compare cumulative and short-lived climate pollutants
Nature Climate Change Nature Publishing Group 6:8 (2016) 773-776