Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Raymond Pierrehumbert FRS

Professor of Planetary Physics

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
  • Planetary Climate Dynamics
  • Solar system
raymond.pierrehumbert@physics.ox.ac.uk
Telephone: 01865 (2)72892
Atmospheric Physics Clarendon Laboratory, room Room 211
Site for my textbook, Principles of Planetary Climate
Pierrehumbert Group Site
  • About
  • Publications

Baroclinic instability

(1995)

Authors:

RT Pierrehumbert, KL Swanson

Abstract:

The study of baroclinic instability has its origins in attempts to explain the genesis of midlatitude synoptic storm systems. The authors provide an account of the fundamental material and unfamiliar aspects of the linear theory. Essential observational background is provided in section 2, and the mathematical basics are laid out in section 3. The review for the most part focuses on quasigeostrophic dynamics, considering only dry dynamics. Discussion is slanted towards the terrestrial atmosphere. Stability criteria are treated in section 4, and normal modes are discussed in section 5. Aspects of the linear initial value problem are taken up in section 6. Section 7 considers briefly the difficult subject of nonlinear equilibration. Finally, section 8, takes stock of where the subject stands and where it is going. (from Authors)

Baroclinic instability

(1995)

Authors:

RT Pierrehumbert, KL Swanson

Abstract:

The study of baroclinic instability has its origins in attempts to explain the genesis of midlatitude synoptic storm systems. The authors provide an account of the fundamental material and unfamiliar aspects of the linear theory. Essential observational background is provided in section 2, and the mathematical basics are laid out in section 3. The review for the most part focuses on quasigeostrophic dynamics, considering only dry dynamics. Discussion is slanted towards the terrestrial atmosphere. Stability criteria are treated in section 4, and normal modes are discussed in section 5. Aspects of the linear initial value problem are taken up in section 6. Section 7 considers briefly the difficult subject of nonlinear equilibration. Finally, section 8, takes stock of where the subject stands and where it is going. (from Authors)

Baroclinic Instability

Annual Review of Fluid Mechanics Annual Reviews 27:1 (1995) 419-467

Authors:

RT Pierrehumbert, KL Swanson
More details from the publisher

Baroclinic Instability

Annual Review of Fluid Mechanics Annual Reviews 27:1 (1995) 419-467

Authors:

RT Pierrehumbert, KL Swanson
More details from the publisher
More details

Temperature fluctuations and atmospheric heat flux

TENTH CONFERENCE ON ATMOSPHERIC AND OCEANIC WAVES AND STABILITY (1995) 196-197

Authors:

KL Swanson, RT Pierrehumbert
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • Current page 32
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet