Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Raymond Pierrehumbert FRS

Professor of Planetary Physics

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Climate dynamics
  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
  • Planetary Climate Dynamics
  • Solar system
raymond.pierrehumbert@physics.ox.ac.uk
Telephone: 01865 (2)72892
Atmospheric Physics Clarendon Laboratory, room Room 211
Site for my textbook, Principles of Planetary Climate
Pierrehumbert Group Site
  • About
  • Publications

Atmospheric pCO2 sensitivity to the biological pump in the ocean

Global Biogeochemical Cycles American Geophysical Union (AGU) 14:4 (2000) 1219-1230

Authors:

David E Archer, Gidon Eshel, Arne Winguth, Wallace Broecker, Ray Pierrehumbert, Michael Tobis, Robert Jacob
More details from the publisher
More details

Spatially correlated and inhomogeneous random advection

Physics of Fluids AIP Publishing 12:4 (2000) 822-834

Authors:

K Ngan, RT Pierrehumbert
More details from the publisher

Lattice models of advection-diffusion.

Chaos (Woodbury, N.Y.) 10:1 (2000) 61-74

Abstract:

We present a synthesis of theoretical results concerning the probability distribution of the concentration of a passive tracer subject to both diffusion and to advection by a spatially smooth time-dependent flow. The freely decaying case is contrasted with the equilibrium case. A computationally efficient model of advection-diffusion on a lattice is introduced, and used to test and probe the limits of the theoretical ideas. It is shown that the probability distribution for the freely decaying case has fat tails, which have slower than exponential decay. The additively forced case has a Gaussian core and exponential tails, in full conformance with prior theoretical expectations. An analysis of the magnitude and implications of temporal fluctuations of the conditional diffusion and dissipation is presented, showing the importance of these fluctuations in governing the shape of the tails. Some results concerning the probability distribution of dissipation, and concerning the spatial scaling properties of concentration fluctuation, are also presented. Though the lattice model is applied only to smooth flow in the present work, it is readily applicable to problems involving rough flow, and to chemically reacting tracers. (c) 2000 American Institute of Physics.
More details from the publisher
More details
More details

‘Equability’ in an unequal world: The early Eocene revisited

GFF Taylor & Francis 122:1 (2000) 101-102

Authors:

Paul J Markwick, Paul J Valdes, Bruce W Sellwood, Raymond T Pierrehumbert
More details from the publisher
More details

Climate change and the tropical Pacific: the sleeping dragon wakes.

Proceedings of the National Academy of Sciences of the United States of America 97:4 (2000) 1355-1358
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • Current page 28
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet