Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Cosmic strings in hematite

Professor Paolo G. Radaelli OSI

Dr Lee's Professor

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Oxide electronics
Paolo.Radaelli@physics.ox.ac.uk
Telephone: 01865 (2)70957
Clarendon Laboratory, room 111
  • About
  • Research
  • Publications

Prof Radaelli recognised with an MPLS "Excellent Supervisor" Award

Physics Award Winners
Prof Radaelli is one of the 5 Oxford Physicists recognised in the inaugural "Excellence in Research Supervision" award

Read the story at this link

Excellence in Research Supervision

Route towards stable homochrial topological textures in A-type antiferromagnets

Physical Review B American Physical Society 105 (2022) 224424

Authors:

Jack Harrison, Hariom Jani, Paolo G Radaelli

Abstract:

Topologically protected whirling magnetic textures could emerge as data carriers in next-generation post-Moore computing. Such textures are abundantly observed in ferromagnets (FMs); however, their antiferromagnetic (AFM) counterparts are expected to be even more relevant for device applications, as they promise ultrafast, deflection-free dynamics while being robust against external fields. Unfortunately, such textures have remained elusive; hence identifying materials hosting them is key to developing this technology. Here, we present comprehensive micromagnetic and analytical models investigating topological textures in the broad material class of A-type antiferromagnets, specifically focusing on the prototypical case of α-Fe2O3—an emerging candidate for AFM spintronics. By exploiting a symmetry-breaking interfacial Dzyaloshinskii-Moriya interaction (iDMI), it is possible to stabilize a wide topological family, including AFM (anti)merons, bimerons, and the hitherto undiscovered AFM skyrmions. While iDMI enforces homochirality and improves the stability of these textures, the widely tunable anisotropy and exchange interactions enable precise control of their core dimensions. We then present a unifying framework to model the scaling of texture sizes based on a simple dimensional analysis. As the parameters required to host and tune homochiral AFM textures may be obtained by rational materials design of α-Fe2O3, it could emerge as a promising platform to initiate AFM topological spintronics.

More details from the publisher
Details from ORA
More details

Route towards stable homochiral topological textures in A -type antiferromagnets

Physical Review B American Physical Society (APS) 105:22 (2022) 224424

Authors:

Jack Harrison, Hariom Jani, Paolo G Radaelli
More details from the publisher

Brexit: delays worry diaspora researchers

Nature Springer Nature 604:7906 (2022) 425-425

Authors:

Carmen Sánchez Cañizares, Milou PM van Poppel, Agata Nyga, Diogo Martins, Paolo Radaelli
More details from the publisher
More details
More details

A route towards stable homochiral topological textures in A-type antiferromagnets

(2021)

Authors:

Jack Harrison, Hariom Jani, Paolo G Radaelli
More details from the publisher
Details from ArXiV

Detailed crystallographic analysis of the ice V to ice XIII hydrogen-ordering phase transition

The Journal of Chemical Physics AIP Publishing 154:13 (2021) 134504

Authors:

Christoph G Salzmann, Alexander Rosu-Finsen, Zainab Sharif, Paolo G Radaelli, John L Finney
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet