Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Cosmic strings in hematite

Professor Paolo G. Radaelli OSI

Dr Lee's Professor

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Oxide electronics
Paolo.Radaelli@physics.ox.ac.uk
Telephone: 01865 (2)70957
Clarendon Laboratory, room 111
  • About
  • Research
  • Publications

Prof Radaelli recognised with an MPLS "Excellent Supervisor" Award

Physics Award Winners
Prof Radaelli is one of the 5 Oxford Physicists recognised in the inaugural "Excellence in Research Supervision" award

Read the story at this link

Excellence in Research Supervision

Jan Zaanen – In memoriam

Advances in Physics Taylor & Francis 72:3 (2024) 259-260
More details from the publisher
Details from ORA

Switching of ferrotoroidal domains via an intermediate mixed state in the multiferroic Y-type hexaferrite Ba0.5Sr1.5Mg2Fe12O22

Physical Review B (Condensed Matter and Materials Physics) American Physical Society 110:13 (2024) 134410

Authors:

Jiahao Chen, Francis Chmiel, Jieyi Liu, Dharmalingam Prabhakaran, Paolo G Radaelli, Roger D Johnson

Abstract:

We report a detailed study of the magnetic field switching of ferrotoroidal/multiferroic domains in the Y-type hexaferrite compound Ba0.5Sr1.5Mg2Fe12O22. By combining data from superconducting quantum interference device (SQUID) magnetometry, magnetocurrent measurements, and resonant x-ray scattering experiments, we arrive at a complete description of the deterministic switching, which involves the formation of a temperaturedependent mixed state in low magnetic fields. This mechanism is likely to be shared by other members of the hexaferrite family, and presents a challenge for the development of high-speed read-write memory devices based on these materials.

More details from the publisher
Details from ORA
More details

A tensorial approach to 'altermagnetism'

(2024)
More details from the publisher
Details from ArXiV

Breaking symmetry with light: photo-induced chirality in a non-chiral crystal

(2024)

Authors:

Z Zeng, M Först, M Fechner, M Buzzi, E Amuah, C Putzke, PJW Moll, D Prabhakaran, P Radaelli, A Cavalleri
More details from the publisher
Details from ArXiV

Spatially reconfigurable antiferromagnetic states in topologically rich free-standing nanomembranes

Nature Materials Nature Research 23:5 (2024) 619-626

Authors:

Hariom Jani, Jack Harrison, Sonu Hooda, Saurav Prakash, Proloy Nandi, Junxiong Hu, Zhiyang Zeng, Jheng-Cyuan Lin, Charles Godfrey, Ganesh ji Omar, Tim A Butcher, Jörg Raabe, Simone Finizio, Aaron Voon-Yew Thean, A Ariando, Paolo G Radaelli

Abstract:

Antiferromagnets hosting real-space topological textures are promising platforms to model fundamental ultrafast phenomena and explore spintronics. However, they have only been epitaxially fabricated on specific symmetry-matched substrates, thereby preserving their intrinsic magneto-crystalline order. This curtails their integration with dissimilar supports, restricting the scope of fundamental and applied investigations. Here we circumvent this limitation by designing detachable crystalline antiferromagnetic nanomembranes of α-Fe2O3. First, we show—via transmission-based antiferromagnetic vector mapping—that flat nanomembranes host a spin-reorientation transition and rich topological phenomenology. Second, we exploit their extreme flexibility to demonstrate the reconfiguration of antiferromagnetic states across three-dimensional membrane folds resulting from flexure-induced strains. Finally, we combine these developments using a controlled manipulator to realize the strain-driven non-thermal generation of topological textures at room temperature. The integration of such free-standing antiferromagnetic layers with flat/curved nanostructures could enable spin texture designs via magnetoelastic/geometric effects in the quasi-static and dynamical regimes, opening new explorations into curvilinear antiferromagnetism and unconventional computing.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet