Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Cosmic strings in hematite

Professor Paolo G. Radaelli OSI

Dr Lee's Professor

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Oxide electronics
Paolo.Radaelli@physics.ox.ac.uk
Telephone: 01865 (2)70957
Clarendon Laboratory, room 111
  • About
  • Research
  • Publications

Prof Radaelli recognised with an MPLS "Excellent Supervisor" Award

Physics Award Winners
Prof Radaelli is one of the 5 Oxford Physicists recognised in the inaugural "Excellence in Research Supervision" award

Read the story at this link

Excellence in Research Supervision

Understanding the Role of Non-Fullerene Acceptors Crystallinity on the Charge Transport Properties and Performance of Organic Solar Cells

(2022)

Authors:

Pierluigi Mondelli, Pascal Kaienburg, Francesco Silvestri, Rebecca Scatena, Claire Welton, Martine Grandjean, Vincent Lemaur, Eduardo Solano, Mathias Nyman, Peter Horton, Simon Coles, Esther Barrena, Moritz Riede, Paolo Radaelli, David Beljonne, Manjunatha Reddy, Graham Morse
More details from the publisher
Details from ArXiV

Activating magnetoelectric optical properties by twisting antiferromagnetic bilayers

Physical Review B American Physical Society 106:18 (2022) 184408

Authors:

Kunihiro Yananose, Paolo G Radaelli, Mario Cuoco, Jaejun Yu, Alessandro Stroppa

Abstract:

Twisting in bilayers introduces structural chirality with two enantiomers, i.e., left- and right-handed bilayers, depending on the oriented twist angle. The interplay between this global chirality and additional degrees of freedom, such as magnetic ordering and the local octahedral chirality arising from the geometry of the bonds, can yield striking phenomena. In this work, we focus on collinear antiferromagnetic CrI3 twisted homo-bilayers, which are characterized by a staggered octahedral chirality in each monolayer. Using symmetry analysis, density functional theory, and tight-binding model calculations we show that layer's twisting can lower the structural and magnetic point-group symmetries, thus activating pyroelectricity and the magneto-optical Kerr effect, which would otherwise be absent in untwisted antiferromagnetic homo-bilayers. Interestingly, both electric polarization and Kerr angle are controllable by the twist angle and their sign is reversed when switching between left- and right-twisted bilayers. We further unveil the occurrence of unconventional vortices with spin textures that alternate opposite chiralities in momentum space. These findings demonstrate that the interplay between twisting and octahedral chirality in magnetic bilayers and related van der Waals heterostructures represents an extraordinary resource for tailoring their physical properties for spintronic and optoelectronic applications.
More details from the publisher
Details from ORA
More details

Theoretical Study of Magnon Spin Currents in Chromium Trihalide Hetero-bilayers: Implications for Magnonic and Spintronic Devices

ACS Applied Nano Materials American Chemical Society (ACS) 5:10 (2022) 15150-15161

Authors:

Doried Ghader, Heng Gao, Paolo G Radaelli, Alessandra Continenza, Alessandro Stroppa
More details from the publisher

Activating magnetoelectric optical properties by twisting antiferromagnetic bilayers

(2022)

Authors:

Kunihiro Yananose, Paolo G Radaelli, Mario Cuoco, Jaejun Yu, Alessandro Stroppa
More details from the publisher
Details from ArXiV

Route towards stable homochrial topological textures in A-type antiferromagnets

Physical Review B American Physical Society 105 (2022) 224424

Authors:

Jack Harrison, Hariom Jani, Paolo G Radaelli

Abstract:

Topologically protected whirling magnetic textures could emerge as data carriers in next-generation post-Moore computing. Such textures are abundantly observed in ferromagnets (FMs); however, their antiferromagnetic (AFM) counterparts are expected to be even more relevant for device applications, as they promise ultrafast, deflection-free dynamics while being robust against external fields. Unfortunately, such textures have remained elusive; hence identifying materials hosting them is key to developing this technology. Here, we present comprehensive micromagnetic and analytical models investigating topological textures in the broad material class of A-type antiferromagnets, specifically focusing on the prototypical case of α-Fe2O3—an emerging candidate for AFM spintronics. By exploiting a symmetry-breaking interfacial Dzyaloshinskii-Moriya interaction (iDMI), it is possible to stabilize a wide topological family, including AFM (anti)merons, bimerons, and the hitherto undiscovered AFM skyrmions. While iDMI enforces homochirality and improves the stability of these textures, the widely tunable anisotropy and exchange interactions enable precise control of their core dimensions. We then present a unifying framework to model the scaling of texture sizes based on a simple dimensional analysis. As the parameters required to host and tune homochiral AFM textures may be obtained by rational materials design of α-Fe2O3, it could emerge as a promising platform to initiate AFM topological spintronics.

More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet