Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Christopher Ramsey

Professor of Archaeological Science

Research theme

  • Accelerator physics
  • Climate physics
  • Instrumentation

Sub department

  • Atomic and Laser Physics
christopher.ramsey@physics.ox.ac.uk
Telephone: 01865285215
School of Archaeology
  • About
  • Publications

The IntCal20 approach to radiocarbon calibration curve construction: A new methodology using Bayesian splines and errors-in-variables

Radiocarbon Cambridge University Press 62:4 (2020) 821-863

Authors:

TJ Heaton, M Blaauw, Blackwell, Christopher Ramsey, Reimer, Scott

Abstract:

To create a reliable radiocarbon calibration curve, one needs not only high-quality data but also a robust statistical methodology. The unique aspects of much of the calibration data provide considerable modeling challenges and require a made-to-measure approach to curve construction that accurately represents and adapts to these individualities, bringing the data together into a single curve. For IntCal20, the statistical methodology has undergone a complete redesign, from the random walk used in IntCal04, IntCal09 and IntCal13, to an approach based upon Bayesian splines with errors-in-variables. The new spline approach is still fitted using Markov Chain Monte Carlo (MCMC) but offers considerable advantages over the previous random walk, including faster and more reliable curve construction together with greatly increased flexibility and detail in modeling choices. This paper describes the new methodology together with the tailored modifications required to integrate the various datasets. For an end-user, the key changes include the recognition and estimation of potential over-dispersion in 14C determinations, and its consequences on calibration which we address through the provision of predictive intervals on the curve; improvements to the modeling of rapid 14C excursions and reservoir ages/dead carbon fractions; and modifications made to, hopefully, ensure better mixing of the MCMC which consequently increase confidence in the estimated curve.
More details from the publisher
Details from ORA
More details

A prehistoric copper-production centre in central Thailand: its dating and wider implications

Antiquity Cambridge University Press 94:376 (2020) 948-965

Authors:

Thomas Higham, A Weiss, V Pigott, C Higham, C Ramsey, J D'Alpoim-Guedes, S Hanson, S Weber, F Rispolli, R Ciarla, TO Pryce

Abstract:

The Khao Wong Prachan Valley of central Thailand is one of four known prehistoric loci of copper mining, smelting and casting in Southeast Asia. Many radiocarbon determinations from bronze-consumption sites in north-east Thailand date the earliest copper-base metallurgy there in the late second millennium BC. By applying kernel density estimation analysis to approximately 100 new AMS radiocarbon dates, the authors conclude that the valley's first Neolithic millet farmers had settled there by c. 2000 BC, and initial copper mining and rudimentary smelting began in the late second millennium BC. This overlaps with the established dates for Southeast Asian metal-consumption sites, and provides an important new insight into the development of metallurgy in central Thailand and beyond.
More details from the publisher
Details from ORA

A prehistoric copper-production centre in central Thailand: Its dating and wider implications

Antiquity 94:376 (2020) 948-965

Authors:

TFG Higham, AD Weiss, CFW Higham, CB Ramsey, J D'Alpoim Guedes, S Hanson, SA Weber, F Rispoli, R Ciarla, TO Pryce, VC Pigott

Abstract:

The Khao Wong Prachan Valley of central Thailand is one of four known prehistoric loci of copper mining, smelting and casting in Southeast Asia. Many radiocarbon determinations from bronze-consumption sites in north-east Thailand date the earliest copper-base metallurgy there in the late second millennium BC. By applying kernel density estimation analysis to approximately 100 new AMS radiocarbon dates, the authors conclude that the valley's first Neolithic millet farmers had settled there by c. 2000 BC, and initial copper mining and rudimentary smelting began in the late second millennium BC. This overlaps with the established dates for Southeast Asian metal-consumption sites, and provides an important new insight into the development of metallurgy in central Thailand and beyond.
More details from the publisher
More details

Tree ring dating using oxygen isotopes: a master chronology for central England

JOURNAL OF QUATERNARY SCIENCE 34:6 (2020) 475-490

Authors:

Neil J Loader, Danny McCarroll, Daniel Miles, Giles HF Young, Darren Davies, Christopher Bronk Ramsey
More details from the publisher
More details

Marine20—The Marine Radiocarbon Age Calibration Curve (0–55,000 cal BP)

Radiocarbon Cambridge University Press (CUP) 62:4 (2020) 779-820

Authors:

Timothy J Heaton, Peter Köhler, Martin Butzin, Edouard Bard, Ron W Reimer, William EN Austin, Christopher Bronk Ramsey, Pieter M Grootes, Konrad A Hughen, Bernd Kromer, Paula J Reimer, Jess Adkins, Andrea Burke, Mea S Cook, Jesper Olsen, Luke C Skinner
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet