Oxygen isotope dendrochronology of Llwyn Celyn; One of the oldest houses in Wales
The Influence of Calibration Curve Construction and Composition on the Accuracy and Precision of Radiocarbon Wiggle-Matching of Tree Rings, Illustrated by Southern Hemisphere Atmospheric Data Sets from AD 1500–1950
Reconciling the Greenland ice-core and radiocarbon timescales through the Laschamp geomagnetic excursion
An archaeological radiocarbon database for southern Africa
Abstract:
The Southern African Radiocarbon Database (SARD) is a new online, open-access database of published radiocarbon dates from southern African archaeological contexts. Compatible with the calibration, Bayesian modelling and mapping functionality of the OxCal software, the SARD will greatly assist in the documentation and analysis of chronological trends across the subcontinent. This article introduces the database and presents two case studies that demonstrate its utility and its integration with OxCal, comparing the temporal distribution of radiocarbon dates in two archaeologically well-investigated regions, and assessing the timing of Middle to Later Stone Age technological developments across the African subcontinent.Absence of age‐related trends in stable oxygen isotope ratios from oak tree rings
Abstract:
The potential for age‐related trends in the stable oxygen isotope ratios of latewood alpha cellulose was investigated in samples of living oak trees and historic building timbers from the UK. When the series are examined individually, it is clear that the strongest trends in individual trees and timbers reflect concurrent trends in climate. Nonclimatic trends are very small and represent random noise that can be removed by averaging. If the same data are analyzed using the more conventional approach of aligning the series by ring number and fitting a regression line, so that the magnitude of the age trend is based on the slope of the mean and the statistical significance on the correlation coefficient, the results are very different. We demonstrate that this conventional approach regularly produces spurious age trends with grossly inflated probabilities, because of offsets in the mean values of series of different length. We conclude that there is no need to detrend stable oxygen isotope series from individual trees or timbers of oak from the UK and that to do so would remove important climatic information. Long isotope chronologies can safely be constructed by combining data from multiple individual trees, or by pooling material from trees prior to chemical treatment and isotopic measurement. Age‐related trends may occur in other species or in other regions, but where they have been identified using the conventional “slope of the mean” approach they should be reassessed using the “mean of the slope” approach.