Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Christopher Ramsey

Professor of Archaeological Science

Research theme

  • Accelerator physics
  • Climate physics
  • Instrumentation

Sub department

  • Atomic and Laser Physics
christopher.ramsey@physics.ox.ac.uk
Telephone: 01865285215
School of Archaeology
  • About
  • Publications

Coupled ocean and atmospheric changes during Greenland stadial 1 in southwestern Europe

QUATERNARY SCIENCE REVIEWS 212 (2019) 108-120
More details from the publisher
More details

The importance of open access to chronological data: the IntChron initiative

Radiocarbon Cambridge University Press 61:5 (2019) 1121-1131

Authors:

Christopher Ramsey, M Blaauw, Rebecca Kearney, RA Staff

Abstract:

The development of chronologies relies on integrating information from a number of different sources. In addition to direct dating evidence, such as radiocarbon dates, researchers will have contextual information which might be an environmental sequence or the context in an archaeological site. This information can be combined through Bayesian or other types of age-model. Once a chronology has been developed, this information can be used to estimate, for example, chronological uncertainties, rates of change, or the age of material which has not been directly dated.

Dealing with the information associated with chronology building is complicated and re-evaluation of chronologies often requires structured information which is hard to access. Although there are many databases with primary dating information, these often do not contain all of the information needed for a chronology. The Chronological Query Language (CQL) developed for OxCal was intended to be a convenient way of pulling such information together for Bayesian analysis. However, even this does not include much of the associated information required for reusing data in other analyses.

The IntChron initiative builds on the framework set up for the INTIMATE (Integrating Ice core, Marine and Terrestrial Records) chronological database (Bronk Ramsey et al. 2014) and is primarily an information exchange format and data visualization tool which enables users to pull together the types of information needed for chronological analysis. It is intended for use with multiple dating methodologies and while it will be integrated with OxCal, is intended to be an open format suitable for use with other software tools. The file format is JSON which is easily readable in software such as R, Python and MatLab. IntChron is not primarily intended to be a data depository but rather an index of sites where information is stored in the relevant format. As an initial step, databases of radiocarbon dates from the Oxford Radiocarbon Accelerator Unit (including those for the NERC radiocarbon facility), the RESET tephra database, the INTIMATE chronological database and regional radiocarbon databases for Egypt and Southern Africa are all linked. The intention is that users of OxCal will also be able to make published data accessible to others and to store working data, visible only to the user, to be used with the associated analysis tools. The IntChron site allows data from third party sources to be accessed through a representational state transfer (REST) application programming interface (API) in a number of different formats (JSON, csv, txt, oxcal) and associated bibliographic information in BibTeX format.

The aim of the IntChron initiative is to make it easy for users to provide data (in the single JSON format with limited minimum requirements) as well as to access data and tools, while promoting robust chronologies including realistic estimates of uncertainties. It is hoped that this will help to bring the chronological research communities to a point where data access is as easy as it is in some other fields. This is particularly important for Early Career Researchers and for those seeking to use large datasets in novel ways.

More details from the publisher
Details from ORA
More details

Feeding Anglo-Saxon England: the bioarchaeology of an agricultural revolution

Antiquity Cambridge University Press 93:368 (2019)

Authors:

H Hamerow, A Bogaard, M Charles, C Ramsey, R Thomas, E Forster, M Holmes, Mark McKerracher, S Neil, E Stroud

Abstract:

The early Middle Ages saw a major expansion of cereal cultivation across large parts of Europe thanks to the spread of open-field farming. A major project to trace this expansion in England by deploying a range of scientific methods is generating direct evidence for this so-called ‘Medieval Agricultural Revolution’.
More details from the publisher
Details from ORA
More details

Accounting for the marine reservoir effect in radiocarbon calibration

QUATERNARY SCIENCE REVIEWS 209 (2019) 129-138

Authors:

Eduardo Q Alves, Kita D Macario, Fernando P Urrutia, Renan P Cardoso, Christopher Bronk Ramsey
More details from the publisher
More details

Island questions: the chronology of the Brochtorff Circle at Xagħra, Gozo, and its significance for the Neolithic sequence on Malta

Archaeological and Anthropological Sciences Springer 11:8 (2019) 4251-4306

Authors:

C Malone, N Cutajar, TR McLaughlin, B Mercieca-Spitera, A Pace, RK Power, S Stoddart, S Sultana, Christopher B Ramsey, E Dunbar, A Bayliss, F Healy, A Whittle

Abstract:

Bayesian chronological modelling of radiocarbon dates from the Brochtorff Circle at Xagħra, Gozo, Malta (achieved through the ToTL and FRAGSUS projects), provides a more precise chronology for the sequence of development and use of a cave complex. Artefacts show that the site was in use from the Żebbuġ period of the late 5th/early 4th millennium cal BC to the Tarxien Cemetery phase of the later 3rd/early 2nd millennia cal BC. Absolutely dated funerary activity, however, starts with a small rock-cut tomb, probably in use in the mid to late fourth millennium cal BC, in the Ġgantija period. After an interval of centuries, burial resumed on a larger scale, probably in the thirtieth century cal BC, associated with Tarxien cultural material, with the use of the cave for collective burial and other depositions, with a series of structures, most notably altar-like settings built from massive stone slabs, which served to monumentalise the space. This process continued at intervals until the deposition of the last burials, probably in the twenty-fourth century cal BC; ceremonial activity may have ended at this time or a little later, to be followed by occupation in the Tarxien Cemetery period. The implications for the development of Neolithic society on Malta are discussed, as well as the changing character of Neolithic Malta in comparison to contemporary communities in Sicily, peninsular Italy and southern Iberia. It is argued that underground settings and temples on Malta may have served to reinforce locally important values of cooperation and consensus, against a wider tide of differentiation and accumulation, but that there could also have been increasing control of the treatment of the dead through time. The end of the Maltese Neolithic is also briefly discussed.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet