Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Image of Jupiter's Great Red Spot from Voyager 1

Image of Jupiter's Great Red Spot, obtained during the fly-by of Jupiter by NASA's Voyager 1 spacecraft in 1979.

Credit: NASA/JPL

Prof. Peter Read

Emeritus/researcher

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Geophysical and Astrophysical Fluid Dynamics
  • Planetary Climate Dynamics
Peter.Read@physics.ox.ac.uk
Telephone: 01865 (2)72082
Atmospheric Physics Clarendon Laboratory, room 210
  • About
  • Publications

A laboratory study of global-scale wave interactions in baroclinic flow with topography II: vacillations and low-frequency variability

Geophysical and Astrophysical Fluid Dynamics Taylor and Francis 109:4 (2015) 359-390

Authors:

Stephan Risch, Peter Read

Abstract:

A laboratory investigation is presented with the aim of studying systematically the occurrence and characteristics of low-frequency variability of flows resulting from the interaction of a baroclinic flow with periodic bottom topography. Low-frequency variability within the baroclinic wave regime occurred in two distinct forms in separate regions of parameter space. One corresponded to the transition region between the baroclinic travelling and stationary wave regimes. It involved primarily an interaction between the drifting baroclinic waves and stationary components of the topographically forced wave. The resulting flow had characteristics similar to amplitude vacillation and had a time-scale of 30–60 annulus revolutions (days), which also corresponded to the wave drift period. A new regime of low-frequency amplitude vacillation was discovered in the transition region with the axisymmetric flow regime. As the complexity of the flow increased the period of the vacillation cycles grew to ∼100–180 “days”. This slower vacillation seemed to involve a cyclic enabling and disabling of nonlinear interactions between the forced stationary wave and the growing and azimuthally drifting wave, which in turn was linked to a decrease in mean flow shear. Subsequent chains of wave-wave interactions characterised the complex but robust oscillation phenomenon. The resulting behaviour has several features in common with some recent models of intraseasonal oscillations in the mid-latitude troposphere and with sudden stratospheric warmings.
More details from the publisher
Details from ORA
More details

Non-axisymmetric flows in a differential-disk rotating system

Journal of Fluid Mechanics Cambridge University Press (CUP) 775 (2015) 349-386

Authors:

Tony Vo, Luca Montabone, Peter L Read, Gregory J Sheard
More details from the publisher

An experimental investigation into topographic resonance in a baroclinic rotating annulus

Geophysical & Astrophysical Fluid Dynamics Taylor & Francis 109:4 (2015) 391-421

Authors:

SD Marshall, PL Read
More details from the publisher

An assessment of the impact of local processes on dust lifting in martian climate models

Icarus Elsevier 252 (2015) 212-227

Authors:

David P Mulholland, Aymeric Spiga, Constantino Listowski, Peter L Read
More details from the publisher

The solsticial pause on Mars: 2 modelling and investigation of causes

Icarus 264 (2015) 465-477

Authors:

DP Mulholland, SR Lewis, PL Read, JB Madeleine, F Forget

Abstract:

The martian solsticial pause, presented in a companion paper (. Lewis et al., 2016), was investigated further through a series of model runs using the UK version of the LMD/UK Mars Global Climate Model. It was found that the pause could not be adequately reproduced if radiatively active water ice clouds were omitted from the model. When clouds were used, along with a realistic time-dependent dust opacity distribution, a substantial minimum in near-surface transient eddy activity formed around solstice in both hemispheres. The net effect of the clouds in the model is, by altering the thermal structure of the atmosphere, to decrease the vertical shear of the westerly jet near the surface around solstice, and thus reduce baroclinic growth rates. A similar effect was seen under conditions of large dust loading, implying that northern midlatitude eddy activity will tend to become suppressed after a period of intense flushing storm formation around the northern cap edge. Suppression of baroclinic eddy generation by the barotropic component of the flow and via diabatic eddy dissipation were also investigated as possible mechanisms leading to the formation of the solsticial pause but were found not to make major contributions. Zonal variations in topography were found to be important, as their presence results in weakened transient eddies around winter solstice in both hemispheres, through modification of the near-surface flow. The zonal topographic asymmetry appears to be the primary reason for the weakness of eddy activity in the southern hemisphere relative to the northern hemisphere, and the ultimate cause of the solsticial pause in both hemispheres. The meridional topographic gradient was found to exert a much weaker influence on near-surface transient eddies.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet