Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Image of Jupiter's Great Red Spot from Voyager 1

Image of Jupiter's Great Red Spot, obtained during the fly-by of Jupiter by NASA's Voyager 1 spacecraft in 1979.

Credit: NASA/JPL

Prof. Peter Read

Emeritus/researcher

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Geophysical and Astrophysical Fluid Dynamics
  • Planetary Climate Dynamics
Peter.Read@physics.ox.ac.uk
Telephone: 01865 (2)72082
Atmospheric Physics Clarendon Laboratory, room 210
  • About
  • Publications

Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses

Quarterly Journal of the Royal Meteorological Society Wiley 141:687 (2015) 550-562

Authors:

DM Mitchell, L Montabone, S Thomson, Peter Read

Abstract:

Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth. © 2014 The Authors.
More details from the publisher
Details from ORA
More details
More details

Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses

Quarterly Journal of the Royal Meteorological Society 141:687 (2015) 550-562

Authors:

DM Mitchell, L Montabone, S Thomson, PL Read

Abstract:

Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.
More details from the publisher

The thermally-driven rotating annulus: horizontal velocities in regular and weakly chaotic flow regimes

University of Oxford (2015)

Authors:

Wolf-Gerrit Früh, David Smith, Stephan H Risch

Abstract:

The dataset is documented in readme.pdf. The data files are in uncompressed .tar format. This dataset contains 11 1/2 hours of horizontal velocity measurements from four experiments using AOPP's 'small annulus' thermally-driven rotating annulus laboratory experiment. The experiments cover regular (2S, 3AV) and weakly chaotic (3SV) flow regimes. The apparatus consists of two concentric right circular cylinders with height 14.0cm and radii 2.5cm and 8.0cm, with a 17% glycerol / 83% water mixture (by volume) between them. The outer cylinder is heated and the inner cylinder cooled relative to the working fluid, with a temperature difference of approximately 4K, and the apparatus rotates about the co-incident axis of the two cylinders at rates between 0.75 and 3.1 rad/s. This setup mimics the main effects acting on a planetary atmosphere: gravity, rotation, and a heating gradient between low and high latitudes.
More details from the publisher
Details from ORA

A new, fast and flexible radiative transfer method for Venus general circulation models

Planetary and Space Science Elsevier 105 (2015) 80-93

Authors:

JM Mendonça, PL Read, CF Wilson, C Lee
More details from the publisher

General Circulation of Planetary Atmospheres: Insights from Rotating Annulus and Related Experiments

MODELING ATMOSPHERIC AND OCEANIC FLOWS: INSIGHTS FROM LABORATORY EXPERIMENTS AND NUMERICAL SIMULATIONS 205 (2015) 9-44

Authors:

Peter L Read, Edgar P Perez, Irene M Moroz, Roland MB Young
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet