Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Image of Jupiter's Great Red Spot from Voyager 1

Image of Jupiter's Great Red Spot, obtained during the fly-by of Jupiter by NASA's Voyager 1 spacecraft in 1979.

Credit: NASA/JPL

Prof. Peter Read

Emeritus/researcher

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Geophysical and Astrophysical Fluid Dynamics
  • Planetary Climate Dynamics
Peter.Read@physics.ox.ac.uk
Telephone: 01865 (2)72082
Atmospheric Physics Clarendon Laboratory, room 210
  • About
  • Publications

The Global Circulation

Chapter in The Atmosphere and Climate of Mars, Cambridge University Press (CUP) (2017) 229-294

Authors:

Jeffrey R Barnes, Robert M Haberle, R John Wilson, Stephen R Lewis, James R Murphy, Peter L Read
More details
More details from the publisher

The Martian Planetary Boundary Layer

Chapter in The Atmosphere and Climate of Mars, Cambridge University Press (CUP) (2017) 172-202

Authors:

Peter L Read, Boris Galperin, Søren E Larsen, Stephen R Lewis, Anni Määttänen, Arakel Petrosyan, Nilton Rennó, Hannu Savijärvi, Tero Siili, Aymeric Spiga, Anthony Toigo, Luis Vázquez
More details
More details from the publisher

A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment

Experiments in Fluids Springer Berlin Heidelberg 2017:58 (2017) 75

Authors:

Helene Scolan, Peter L Read

Abstract:

We present an experimental study of flows in a cylindrical rotating annulus convectively forced by local heating in an annular ring at the bottom near the external wall and via a cooled circular disk near the axis at the top surface of the annulus. This new configuration is distinct from the classical thermally-driven annulus analogue of the atmosphere circulation, in which thermal forcing is applied uniformly on the sidewalls, but with a similar aim to investigate the baroclinic instability of a rotating, stratified flow subject to zonally symmetric forcing. Two vertically and horizontally displaced heat sources/sinks are arranged so that, in the absence of background rotation, statically unstable Rayleigh-Bénard convection would be induced above the source and beneath the sink, thereby relaxing strong constraints placed on background temperature gradients in previous experimental configurations based on the conventional rotating annulus. This better emulates local vigorous convection in the tropics and polar regions of the atmosphere whilst also allowing stably-stratified baroclinic motion in the central zone of the annulus, as in midlatitude regions in the Earth’s atmosphere. Regimes of flow are identified, depending mainly upon control parameters that in turn depend on rotation rate and the strength of differential heating. Several regimes exhibit baroclinically unstable flows which are qualitatively similar to those previously observed in the classical thermally-driven annulus, However, in contrast to the classical configuration, they typically exhibit more spatiotemporal complexity. Thus, several regimes of flow demonstrate the equilibrated co-existence of, and interaction between, free convection and baroclinic wave modes. These new features were not previously observed in the classical annulus and validate the new setup as a tool for exploring fundamental atmosphere-like dynamics in a more realistic framework. Thermal structure in the fluid is investigated and found to be qualitatively consistent with previous numerical results, with nearly isothermal conditions respectively above and below the heat source and sink, and stably-stratified, sloping isotherms in the near-adiabatic interior.
More details from the publisher
Details from ORA
More details

Obituary: Raymond Hide, CBE ScD FRS

Weather Wiley 72:1 (2017) 24-25
More details from the publisher

Ertel potential vorticity versus Bernoulli streamfunction on Mars

Quarterly Journal of the Royal Meteorological Society Wiley 143:702 (2016) 37-52

Authors:

TE Dowling, ME Bradley, J Du, SR Lewis, Peter Read

Abstract:

Scatter plots of Ertel potential vorticity, Q, versus Bernoulli streamfunction, B, on potential temperature surfaces, θ, are investigated for Mars using the global Mars Analysis Correction Data Assimilation (MACDA) reanalysis, which spans Mars Year (MY) 24.39 to 27.24. In midlatitudes, Mars exhibits monotonic, function-like Q(B) correlations on θ surfaces similar to those observed for Earth. We quantify this with linear regressions of Q versus B over the vertical range θ=400 to 900 K (∼30 to 60 km). In autumn, winter and spring, in both hemispheres, the non-dimensionalized correlation generally lies between zero and unity and gradually decreases with height, whereas in northern summer, it swings negative. These characteristics match Earth's lower mesosphere (θ= 2000 to 3000 K; z≈ 48 to 62 km) during the same seasons. The exception is southern summer, when the correlation on Mars nearly vanishes. In time series, the transition into and out of northern summer is sinuous and centred just after solar longitude Ls = 90°, whereas in southern summer it is abrupt and spans ΔLs≈120°, which is one third of a Mars year. A striking feature seen on Mars but not on Earth is a large range of Q over the narrow domain of B poleward of each winter polar jet, particularly in the north, which is consistent with the known annular structure of the Martian polar vortex. Froude number calculations suggest the existence of a planetary-scale hydraulic jump associated with the winter polar jet.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet