A Lorenz/Boer energy budget for the atmosphere of Mars from a "reanalysis" of spacecraft observations
Geophysical Research Letters American Geophysical Union 42:20 (2015) 8320-8327
Abstract:
We calculate a Lorenz energy budget for the Martian atmosphere from reanalysis derived from Mars Global Surveyor data for Mars years 24-27. We present global, annual mean energy and conversion rates per unit area and per unit mass and compare these to Earth data. The directions of the energy conversion terms for Mars are similar to Earth, with the exception of the barotropic conversion between zonal and eddy kinetic energy reservoirs. Further, seasonal and hemispheric decomposition reveals a strong conversion between zonal energy reservoirs over the year, but these balance each other out in global and annual mean. On separating the diurnal timescale, the contribution to the conversion terms and eddy kinetic energy for diurnal and shorter timescales in many cases (especially during planet-encircling dust storms) exceeds the contribution of longer timescales. This suggests that thermal tides have a significant effect on the generation of eddy kinetic energy. Key Points Comprehensive analysis of global and hemispheric energy exchanges within the Mars atmosphere Thermal tides have a significant impact on eddy energy and conversion terms Most conversion occurs in zonal component but is canceled out in annual and global meanSpectral analysis of Uranus' 2014 bright storm with VLT/SINFONI
(2015)
Predictability of the thermally-driven laboratory rotating annulus
Quarterly Journal of the Royal Meteorological Society John Wiley and Sons (2015) n/a-n/a
Abstract:
We investigate the predictability of the thermally driven rotating annulus, a laboratory experiment used to study the dynamics of planetary atmospheres under controlled and reproducible conditions. Our approach is to apply the same principles used to predict the atmosphere in operational weather forecasting. We build a forecasting system for the annulus using the analysis correction method for data assimilation, the breeding method for ensemble generation, and the Met Office/Oxford Rotating Annulus Laboratory Simulation as the forecast model. The system forecasts the annulus in steady (2S), amplitude vacillating (3AV), and structurally vacillating (3SV) flow regimes, verifying the forecasts against laboratory data. The results show that a range of flow regimes from this experiment can be accurately predicted. Forecasts in the steady wave flow regime perform well, and are predictable until the end of the available data. Forecasts in the amplitude and structural vacillation flow regimes lose quality and skill by a combination of wave drift and wavenumber transition. Amplitude vacillation is predictable up to several hundred seconds ahead, and structural vacillation is predictable for a few hundred seconds. The wavenumber transitions are partly explained by hysteresis in the rotating annulus experiment and model.The solsticial pause on Mars: 2 modelling and investigation of causes
Icarus Elsevier 264 (2015) 465-477
Abstract:
The martian solsticial pause, presented in a companion paper (Lewis et al., 2016), was investigated further through a series of model runs using the UK version of the LMD/UK Mars Global Climate Model. It was found that the pause could not be adequately reproduced if radiatively active water ice clouds were omitted from the model. When clouds were used, along with a realistic time-dependent dust opacity distribution, a substantial minimum in near-surface transient eddy activity formed around solstice in both hemispheres. The net effect of the clouds in the model is, by altering the thermal structure of the atmosphere, to decrease the vertical shear of the westerly jet near the surface around solstice, and thus reduce baroclinic growth rates. A similar effect was seen under conditions of large dust loading, implying that northern midlatitude eddy activity will tend to become suppressed after a period of intense flushing storm formation around the northern cap edge. Suppression of baroclinic eddy generation by the barotropic component of the flow and via diabatic eddy dissipation were also investigated as possible mechanisms leading to the formation of the solsticial pause but were found not to make major contributions. Zonal variations in topography were found to be important, as their presence results in weakened transient eddies around winter solstice in both hemispheres, through modification of the near-surface flow. The zonal topographic asymmetry appears to be the primary reason for the weakness of eddy activity in the southern hemisphere relative to the northern hemisphere, and the ultimate cause of the solsticial pause in both hemispheres. The meridional topographic gradient was found to exert a much weaker influence on near-surface transient eddies.Spectral analysis of Uranus' 2014 bright storm with VLT/SINFONI
Icarus Elsevier 264 (2015) 72-89