Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Image of Jupiter's Great Red Spot from Voyager 1

Image of Jupiter's Great Red Spot, obtained during the fly-by of Jupiter by NASA's Voyager 1 spacecraft in 1979.

Credit: NASA/JPL

Prof. Peter Read

Emeritus/researcher

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Geophysical and Astrophysical Fluid Dynamics
  • Planetary Climate Dynamics
Peter.Read@physics.ox.ac.uk
Telephone: 01865 (2)72082
Atmospheric Physics Clarendon Laboratory, room 210
  • About
  • Publications

Modeling the Martian dust cycle 1. Representations of dust transport processes

Journal of Geophysical Research 107 (2002) 5123 18pp

Authors:

PL Read, C. E. Newman, S. R. Lewis, F. Forget
More details from the publisher
More details

Bifurcations and instabilities in rotating, two-layer fluids: II. beta-plane

NONLINEAR PROC GEOPH 9:3-4 (2002) 289-309

Authors:

AF Lovegrove, IM Moroz, PL Read

Abstract:

In this paper, we show that the behavior of weakly nonlinear waves in a 2-layer model of baroclinic instability on a P-plane with varying viscosity is determined by a single degenerate codimension three bifurcation. In the process, we show how previous studies, using the method of multiple scales to derive evolution equations for the slowly varying amplitude of the growing wave, arise as special limits of the general evolution description.
More details from the publisher

Modeling the Martian dust cycle - 2. Multiannual radiatively active dust transport simulations

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS 107:E12 (2002) ARTN 5124

Authors:

CE Newman, SR Lewis, PL Read, F Forget
More details from the publisher

Editorial

Nonlinear Processes in Geophysics 8:4-5 (2001) 191-192
More details from the publisher

Bifurcations and instabilities in rotating two-layer fluids: I. f-plane

Nonlinear Processes in Geophysics 8:1-2 (2001) 21-36

Authors:

AF Lovegrove, IM Moroz, PL Read

Abstract:

In this paper, we show that the behaviour of weakly nonlinear waves in a 2-layer model of baroclinic instability on an f-plane with varying viscosity is determined by a single, degenerate codimension three bifurcation. In the process, we show how previous studies, using the method of multiple scales to derive evolution equations for the slowly varying amplitude of the growing wave, arise as special limits of the general evolution description. A companion study will extend the results to a β-plane.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 47
  • Page 48
  • Page 49
  • Page 50
  • Current page 51
  • Page 52
  • Page 53
  • Page 54
  • Page 55
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet