Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
One of the substrate layouts for our organic solar cells
Credit: AFMD Group

Moritz Riede

Professor of Soft Functional Nanomaterials

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Advanced Functional Materials and Devices (AFMD) Group
moritz.riede@physics.ox.ac.uk
Telephone: 01865 (2)72377 (office),01865 (2)82095 (lab)
  • About
  • Research
  • Teaching
  • Publications

Studying the kinetic parameters of BaTi5O11 by using the thermoluminescence technique

Arabian Journal of Chemistry Elsevier 16:11 (2023) 105247-105247

Authors:

M Mostafa, Mf El-Shahat, M El-Kinawy, N El-Faramawy, M Riede, G Bassioni

Abstract:

The present study discusses the thermoluminescence (TL) characteristics of monoclinic barium titanate (BaTi5O11) which is chemically prepared using the sol–gel technique. The crystallinity is confirmed by X-ray diffraction, and the oxidation state of each element, morphology, and particle size of the prepared powder are chemically probed by different spectroscopic tools including X-ray Photoelectron Spectroscopy and Energy dispersive X-Ray spectroscopy. The sample is irradiated by a beta (β)-source with different applied doses in the range of 1.1––385 Gy. The kinetic parameters which correspond to the charge carrier traps were determined. The analysis methods indicated that the TL glow curve of BaTi5O11 consists of 6 overlapped peaks corresponding to 6 electron traps. The values for the trap depth are found to be in the range 0.94–1.40 eV and the TL glow peaks are located between 380.4 and 560.5 K. The study confirms the potential of BaTi5O11 for β-dosimetry.
More details from the publisher
Details from ORA
More details

Roadmap on Photovoltaic Absorber Materials for Sustainable Energy Conversion

(2023)

Authors:

James C Blakesley, Ruy S Bonilla, Marina Freitag, Alex M Ganose, Nicola Gasparini, Pascal Kaienburg, George Koutsourakis, Jonathan D Major, Jenny Nelson, Nakita K Noel, Bart Roose, Jae Sung Yun, Simon Aliwell, Pietro P Altermatt, Tayebeh Ameri, Virgil Andrei, Ardalan Armin, Diego Bagnis, Jenny Baker, Hamish Beath, Mathieu Bellanger, Philippe Berrouard, Jochen Blumberger, Stuart A Boden, Hugo Bronstein, Matthew J Carnie, Chris Case, Fernando A Castro, Yi-Ming Chang, Elmer Chao, Tracey M Clarke, Graeme Cooke, Pablo Docampo, Ken Durose, James R Durrant, Marina R Filip, Richard H Friend, Jarvist M Frost, Elizabeth A Gibson, Alexander J Gillett, Pooja Goddard, Severin N Habisreutinger, Martin Heeney, Arthur D Hendsbee, Louise C Hirst, M Saiful Islam, KDG Imalka Jayawardena, Michael B Johnston, Matthias Kauer, Jeff Kettle, Ji-Seon Kim, Dan Lamb, David Lidzey, Jihoo Lim, Roderick MacKenzie, Nigel Mason, Iain McCulloch, Keith P McKenna, Sebastian B Meier, Paul Meredith, Graham Morse, John D Murphy, Chris Nicklin, Paloma Ortega-Arriaga, Thomas Osterberg, Jay B Patel, Anthony Peaker, Moritz Riede, Martyn Rush, James W Ryan, David O Scanlon, Peter J Skabara, Franky So, Henry J Snaith, Ludmilla Steier, Jarla Thiesbrummel, Alessandro Troisi, Craig Underwood, Karsten Walzer, Trystan Watson, J Michael Walls, Aron Walsh, Lucy D Whalley, Benedict Winchester, Samuel D Stranks, Robert LZ Hoye
More details from the publisher
Details from ArXiV

Understanding the Role of Non-Fullerene Acceptor Crystallinity on the Charge Transport Properties and Performance of Organic Solar Cells

Journal of Materials Chemistry A Royal Society of Chemistry (RSC) (2023)

Authors:

Pierluigi Mondelli, Pascal Kaienburg, Francesco Silvestri, Rebecca Scatena, Claire Welton, Martine Grandjean, Vincent Lemaur, Eduardo Solano, Mathias Nyman, Peter Horton, Simon Coles, Esther Barrena, Moritz Riede, Paolo Radelli, David Beljonne, Gn Manjunatha Reddy, Graham Edward Morse

Abstract:

<jats:p>The acceptor crystallinity has long been associated with favourable organic solar cells (OSCs) properties such as high mobility and Fill Factor. In particular, this applies to acceptor materials such as...</jats:p>
More details from the publisher
Details from ORA
More details

Vacuum deposited organic solar cells with BTIC-H as A–D–A non-fullerene acceptor

APL Materials AIP Publishing 11:6 (2023)

Authors:

Irfan Habib, Pascal Kaienburg, Dondong Xia, Olivia Gough, Ming Zhu, Joseph Spruce, Weiwei Li, Moritz Riede

Abstract:

<jats:p>The record power conversion efficiency of solution-processed organic solar cells (OSCs) has almost doubled since non-fullerene acceptors (NFAs) replaced fullerene derivatives as the best-performing acceptor molecules. The successful transition from C60 to NFAs is still pending for vacuum-thermal evaporated (VTE) OSCs, not least because most NFAs are too large to be evaporated without breaking. Due to VTE’s relevance in terms of industrial manufacturing, discovering high-performing VTE NFAs is a major opportunity for OSCs. Here, we fabricate evaporated OSCs based on the NFA BTIC-H known from solution processing. This A–D–A molecule has an unfused bithiophene core, 1,1-dicyanomethylene-3-indanone end groups, and hexyl side chains, making it small enough to be evaporated well. We pair BTIC-H with four commonly used evaporated donors—DCV5T-Me(3,3), DTDCPB, HB194, and SubNc—in planar heterojunctions. We observe appreciable photocurrents and a voltage loss of ∼0.8 V, matching that of corresponding C60 devices. Donor:BTIC-H bulk heterojunctions likely face charge collection issues due to unfavorable microstructure. Our work demonstrates one of few NFA based evaporated OSCs with encouraging performance results and gives one potential starting point for molecule design of further NFAs suitable for VTE.</jats:p>
More details from the publisher
Details from ORA
More details

Vacuum-Deposited Donors for Low-Voltage-Loss Nonfullerene Organic Solar Cells.

ACS applied materials & interfaces (2023)

Authors:

Pascal Kaienburg, Helen Bristow, Anna Jungbluth, Irfan Habib, Iain McCulloch, David Beljonne, Moritz Riede

Abstract:

The advent of nonfullerene acceptors (NFAs) enabled records of organic photovoltaics (OPVs) exceeding 19% power conversion efficiency in the laboratory. However, high-efficiency NFAs have so far only been realized in solution-processed blends. Due to its proven track record in upscaled industrial production, vacuum thermal evaporation (VTE) is of prime interest for real-world OPV commercialization. Here, we combine the benchmark solution-processed NFA Y6 with three different evaporated donors in a bilayer (planar heterojunction) architecture. We find that voltage losses decrease by hundreds of millivolts when VTE donors are paired with the NFA instead of the fullerene C60, the current standard acceptor in VTE OPVs. By showing that evaporated small-molecule donors behave much like solution-processed donor polymers in terms of voltage loss when combined with NFAs, we highlight the immense potential for evaporable NFAs and the urgent need to direct synthesis efforts toward making smaller, evaporable compounds.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet