Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
One of the substrate layouts for our organic solar cells
Credit: AFMD Group

Moritz Riede

Professor of Soft Functional Nanomaterials

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Advanced Functional Materials and Devices (AFMD) Group
moritz.riede@physics.ox.ac.uk
Telephone: 01865 (2)72377 (office),01865 (2)82095 (lab)
  • About
  • Research
  • Teaching
  • Publications

Probing the energy levels of organic bulk heterojunctions by varying the donor content

APL Materials American Institute of Physics 11 (2023) 061105

Authors:

Anna Jungbluth, Pascal Kaienburg, Andreas Lauritzen, Thomas Derrien, Moritz Riede

Abstract:

The performance of organic solar cells is strongly governed by the properties of the photovoltaic active layer. In particular, the energetics at the donor (D)–acceptor (A) interface dictate the properties of charge transfer (CT) states and limit the open-circuit voltage. More generally, energetic landscapes in thin films are affected by intermolecular, e.g., van der Waals, dipole, and quadrupole, interactions that vary with D:A mixing ratio and impact energy levels of free charges (ionization energy, electron affinity) and excitons (singlet, CT states). Disentangling how different intermolecular interactions impact energy levels and support or hinder free charge generation is still a major challenge. In this work, we investigate interface energetics of bulk heterojunctions via sensitive external quantum efficiency measurements and by varying the D:A mixing ratios of ZnPc or its fluorinated derivatives and C60. With increasing donor fluorination, the energetic offset between FxZnPc and C60 reduces. Moving from large to low offset systems, we find qualitatively different trends in device performances with D:C60 mixing ratios. We rationalize the performance trends via changes in the energy levels that govern exciton separation and voltage losses. We do so by carefully analyzing shifts and broadening sEQE spectra on a linear and logarithmic scale. Linking this analysis with molecular properties and device performance, we comment on the impact of charge–quadrupole interactions for CT dissociation and free charge generation in our D:C60 blends. With this, our work (1) demonstrates how relatively accessible characterization techniques can be used to probe energy levels and (2) addresses ongoing discussions on future molecular design and optimal D–A pairing for efficient CT formation and dissociation.

More details from the publisher
Details from ORA
More details

Understanding the Role of Non-Fullerene Acceptors Crystallinity on the Charge Transport Properties and Performance of Organic Solar Cells

(2022)

Authors:

Pierluigi Mondelli, Pascal Kaienburg, Francesco Silvestri, Rebecca Scatena, Claire Welton, Martine Grandjean, Vincent Lemaur, Eduardo Solano, Mathias Nyman, Peter Horton, Simon Coles, Esther Barrena, Moritz Riede, Paolo Radaelli, David Beljonne, Manjunatha Reddy, Graham Morse
More details from the publisher
Details from ArXiV

Electronic and microstructure properties of all-small-molecule organic solar cells

SPIE, the international society for optics and photonics (2022) 31

Authors:

Pascal Kaienburg, Andreas Lauritzen, Irfan Habib, Olivia Gough, Subhrangsu Mukherjee, Harald Ade, Moritz Riede
More details from the publisher

The crystal packing of non-fullerene acceptors in organic solar cells

SPIE, the international society for optics and photonics (2022) 27

Authors:

Pierluigi Mondelli, Pascal Kaienburg, Francesco Silvestri, Eduardo Solano, Esther Barrena, Moritz Riede, Graham Morse
More details from the publisher

All-Small-Molecule Organic Solar Cells – Performance, Electronic & Microstructure Properties

Fundacio Scito (2022)

Authors:

Pascal Kaienburg, Moritz Riede
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet