Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 246.1
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot.

Phys Rev Lett 99:19 (2007) 197403

Authors:

Anas F Jarjour, Rachel A Oliver, Abbes Tahraoui, Menno J Kappers, Colin J Humphreys, Robert A Taylor

Abstract:

We report direct evidence for the control of the oscillator strength of the exciton state in a single quantum dot by the application of a vertical electric field. This is achieved through the study of the radiative lifetime of a single InGaN-GaN quantum dot in a p-i-n diode structure. Our results are in good quantitative agreement with theoretical predictions from an atomistic tight-binding model. Furthermore, the increase of the overlap between the electron and hole wave functions due to the applied field is shown experimentally to increase the attractive Coulomb interaction leading to a change in the sign of the biexcitonic binding energy.
More details from the publisher
More details

Creating diamond color centers for quantum optical applications

(2007)

Authors:

FC Waldermann, P Olivero, J Nunn, K Surmacz, ZY Wang, D Jaksch, RA Taylor, IA Walmsley, M Draganski, P Reichart, AD Greentree, DN Jamieson, S Prawer
More details from the publisher
Details from ArXiV

Cavity-enhanced blue single-photon emission from a single InGaNGaN quantum dot

Applied Physics Letters 91:5 (2007)

Authors:

AF Jarjour, RA Taylor, RA Oliver, MJ Kappers, CJ Humphreys, A Tahraoui

Abstract:

The authors report on the generation of single photons in the blue spectral region from a single InGaNGaN quantum dot. The collection efficiency was enhanced by embedding the quantum dot layer in the middle of a low- Q microcavity. The microphotoluminescence is observed to be approximately ten times stronger than typical InGaN quantum dot emission without a cavity. The measurements were performed using nonlinear excitation spectroscopy in order to suppress the background emission from the underlying wetting layer. © 2007 American Institute of Physics.
More details from the publisher

Magneto-optical studies of single-wall carbon nanotubes

Physical Review B - Condensed Matter and Materials Physics 76:8 (2007)

Authors:

IB Mortimer, LJ Li, RA Taylor, GLJA Rikken, O Portugall, RJ Nicholas

Abstract:

We report a detailed study of the magnetophotoluminescence of single-wall carbon nanotubes at various temperatures in fields up to 58 T. We give direct experimental evidence of the diameter dependence of the Aharanov-Bohm phase-induced band gap shifts. Large increases in intensity are produced by the magnetic field at low temperatures which are also significantly chiral index [(n,m)] dependent. These increases are attributed to the magnetic field induced mixing of the wave functions of the exciton states. A study of the emission from nanotubes aligned perpendicular to the applied magnetic field shows even larger field-induced photoluminescence intensity enhancements and unexpectedly large redshifts in band gap energies, not predicted theoretically. © 2007 The American Physical Society.
More details from the publisher

Comparison of Exciton Optical Nonlinearities for Resonant and Non-Resonant Excitation

Journal of the Korean Physical Society Korean Physical Society 51:1 (2007) 149-149

Authors:

K Kyhm, RA Taylor
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • Current page 53
  • Page 54
  • Page 55
  • Page 56
  • Page 57
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet