Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 246.1
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Quantum dot emission from site-controlled InGaN/GaN micropyramid arrays

APPLIED PHYSICS LETTERS 85:19 (2004) 4281-4283

Authors:

PR Edwards, RW Martin, IM Watson, C Liu, RA Taylor, JH Rice, JH Na, JW Robinson, JD Smith
More details from the publisher

Simulation of the quantum-confined stark effect in a single InGaN quantum dot

(2004) 5-6

Authors:

KH Lee, JW Robinson, JH Rice, JH Na, RA Taylor, RA Oliver, MJ Kappers, CJ Humphreys

Abstract:

By means of a 3D self-consistent numerical simulation we have calculated the effect of an externally-applied lateral electric field upon a single InGaN quantum dot. Overall, good agreement between the modeling and experimental results was observed. Modeling results support the observation that the quantum-confined Stark effect has both permanent dipole moment and polarizability components.
More details
More details from the publisher

Time-integrated and time-resolved photoluminescence studies of InGaN quantum dots

(2004) 568-572

Authors:

JW Robinson, JH Rice, A Jarjour, JD Smith, RA Taylor, RA Oliver, GAD Briggs, MJ Kappers, CJ Humphreys, S Yasin, Y Arakawa

Abstract:

We present studies of the optical transitions in InGaN quantum dots (QDs). Spatially-resolved micro-photoluminescence (mu-PL) of single InGaN QDs reveals very sharp, clearly-defined peaks that are characteristic of strongly-confined carriers. Time-resolved measurements for single InGaN QDs reveal single exponential decays in contrast to non-exponential decays from the 2D wetting layer (WL) and from ensemble measurements. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
More details from the publisher

Time-resolved gain saturation dynamics in InGaN multi-quantum well structures

PHYS STATUS SOLIDI C (2004) 2508-2511

Authors:

K Kyhm, JD Smith, RA Taylor, JF Ryan, Y Arakawa
More details from the publisher

Time-resolved dynamics in single InGaN quantum dots

Applied Physics Letters 83:13 (2003) 2674-2676

Authors:

JW Robinson, JH Rice, A Jarjour, JD Smith, RA Taylor, RA Oliver, GAD Briggs, MJ Kappers, CJ Humphreys, Y Arakawa

Abstract:

A study was performed on the time-resolved dynamics in single InGaN quantum dots. The recombination was shown to be characterized by a single exponential decay. The results showed that the lifetimes of single dots in the temperature range 4 to 60 K decrease with increasing temperature.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 67
  • Page 68
  • Page 69
  • Page 70
  • Current page 71
  • Page 72
  • Page 73
  • Page 74
  • Page 75
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet