Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
MicroPL optical setup

Professor Robert Taylor

Emeritus Professor of Condensed Matter Physics

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum Optoelectronics
Robert.Taylor@physics.ox.ac.uk
Telephone: 01865 (2)72230
Clarendon Laboratory, room 164
orcid.org/0000-0003-2578-9645
  • About
  • Teaching
  • Positions available
  • Publications

Lasing in perovskite nanocrystals

Image of transverse modes from lasing nanocrystals
Nano Research, 14, 108, 2021

Time-integrated and time-resolved photoluminescence studies of InGaN quantum dots

(2004) 568-572

Authors:

JW Robinson, JH Rice, A Jarjour, JD Smith, RA Taylor, RA Oliver, GAD Briggs, MJ Kappers, CJ Humphreys, S Yasin, Y Arakawa

Abstract:

We present studies of the optical transitions in InGaN quantum dots (QDs). Spatially-resolved micro-photoluminescence (mu-PL) of single InGaN QDs reveals very sharp, clearly-defined peaks that are characteristic of strongly-confined carriers. Time-resolved measurements for single InGaN QDs reveal single exponential decays in contrast to non-exponential decays from the 2D wetting layer (WL) and from ensemble measurements. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
More details from the publisher

Time-resolved gain saturation dynamics in InGaN multi-quantum well structures

PHYS STATUS SOLIDI C (2004) 2508-2511

Authors:

K Kyhm, JD Smith, RA Taylor, JF Ryan, Y Arakawa
More details from the publisher

Time-resolved dynamics in single InGaN quantum dots

Applied Physics Letters 83:13 (2003) 2674-2676

Authors:

JW Robinson, JH Rice, A Jarjour, JD Smith, RA Taylor, RA Oliver, GAD Briggs, MJ Kappers, CJ Humphreys, Y Arakawa

Abstract:

A study was performed on the time-resolved dynamics in single InGaN quantum dots. The recombination was shown to be characterized by a single exponential decay. The results showed that the lifetimes of single dots in the temperature range 4 to 60 K decrease with increasing temperature.
More details from the publisher

Time-resolved Dynamics in Single InGaN Quantum Dots

Applied Physics Letters 83 (2003) 2674-2676

Authors:

RA Taylor, J.W. Robinson, James H. Rice, A. Jarjour
More details from the publisher
More details

InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal

Applied Physics Letters 83:4 (2003) 755-757

Authors:

RA Oliver, GAD Briggs, MJ Kappers, CJ Humphreys, S Yasin, JH Rice, JD Smith, RA Taylor

Abstract:

InGaN quantum dots grown by metalorganic vapor phase epitaxy were investigated. The InGaN epilayer was annealed at the growth temperature in molecular nitrogen. Microphotoluminescence studies of the quantum dots revealed sharp peaks with typical linewidths of ∼700 μeV. Time-resolved photoluminescence studies were also used for analysis.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 70
  • Page 71
  • Page 72
  • Page 73
  • Current page 74
  • Page 75
  • Page 76
  • Page 77
  • Page 78
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet