Measurement of Zero-Frequency Fluctuations Generated by Coupling between Alfvén Modes in the JET Tokamak.
Physical review letters American Physical Society (APS) 134:9 (2025) 95103
Abstract:
We report the first experimental detection of a zero-frequency fluctuation that is pumped by an Alfvén mode in a magnetically confined plasma. Core-localized Alfvén modes of frequency inside the toroidicity-induced gap (and its harmonics) exhibit three-wave coupling interactions with a zero-frequency fluctuation. The observation of the zero-frequency fluctuation is consistent with theoretical and numerical predictions of zonal modes pumped by Alfvén modes, and is correlated with an increase in the deep core ion temperature, temperature gradient, confinement factor H_{89,P}, and a reduction in the main ion heat diffusivity. Despite the energetic particle transport induced by the Alfvén eigenmodes, the generation of a zero-frequency fluctuation that can suppress the turbulence leads to an overall improvement of confinement.Simulation and analysis of a high-k electron-scale turbulence diagnostic for MAST-U
Nuclear Fusion IOP Publishing (2025)
New linear stability parameter to describe low-β electromagnetic microinstabilities driven by passing electrons in axisymmetric toroidal geometry
Plasma Physics and Controlled Fusion IOP Publishing 65:4 (2023) 045011
Abstract:
In magnetic confinement fusion devices, the ratio of the plasma pressure to the magnetic field energy, β, can become sufficiently large that electromagnetic microinstabilities become unstable, driving turbulence that distorts or reconnects the equilibrium magnetic field. In this paper, a theory is proposed for electromagnetic, electron-driven linear instabilities that have current layers localised to mode-rational surfaces and binormal wavelengths comparable to the ion gyroradius. The model retains axisymmetric toroidal geometry with arbitrary shaping, and consists of orbit-averaged equations for the mode-rational surface layer, with a ballooning space kinetic matching condition for passing electrons. The matching condition connects the current layer to the large scale electromagnetic fluctuations, and is derived in the limit that β is comparable to the square root of the electron-to-ion-mass ratio. Electromagnetic fluctuations only enter through the matching condition, allowing for the identification of an effective β that includes the effects of equilibrium flux surface shaping. The scaling predictions made by the asymptotic theory are tested with comparisons to results from linear simulations of micro-tearing and electrostatic microinstabilities in MAST discharge #6252, showing excellent agreement. In particular, it is demonstrated that the effective β can explain the dependence of the local micro-tearing mode (MTM) growth rate on the ballooning parameter θ 0-possibly providing a route to optimise local flux surfaces for reduced MTM-driven transport.Validating and optimizing mismatch tolerance of Doppler backscattering measurements with the beam model (invited).
The Review of scientific instruments 93:10 (2022) 103536
Abstract:
We use the beam model of Doppler backscattering (DBS), which was previously derived from beam tracing and the reciprocity theorem, to shed light on mismatch attenuation. This attenuation of the backscattered signal occurs when the wavevector of the probe beam's electric field is not in the plane perpendicular to the magnetic field. Correcting for this effect is important for determining the amplitude of the actual density fluctuations. Previous preliminary comparisons between the model and Mega-Ampere Spherical Tokamak (MAST) plasmas were promising. In this work, we quantitatively account for this effect on DIII-D, a conventional tokamak. We compare the predicted and measured mismatch attenuation in various DIII-D, MAST, and MAST-U plasmas, showing that the beam model is applicable in a wide variety of situations. Finally, we performed a preliminary parameter sweep and found that the mismatch tolerance can be improved by optimizing the probe beam's width and curvature at launch. This is potentially a design consideration for new DBS systems.Three-dimensional inhomogeneity of electron-temperature-gradient turbulence in the edge of tokamak plasmas
Nuclear Fusion IOP Publishing 62:8 (2022) 086045