Search for non-relativistic Magnetic Monopoles with IceCube
European Physical Journal C Springer Verlag C74:7 (2014) 2938-2938
Abstract:
The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting $1\,\mathrm{km}^3$ of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of $10^{-27}\,\mathrm{cm^2}$ to $10^{-21}\,\mathrm{cm^2}$. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of $10^{-22}\,(10^{-24})\,\mathrm{cm^2}$ the flux of non-relativistic GUT monopoles is constrained up to a level of $\Phi_{90} \le 10^{-18}\,(10^{-17})\,\mathrm{cm^{-2}s^{-1}sr^{-1}}$ at a 90% confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.Fingerprints of Galactic Loop I on the Cosmic Microwave Background
Astrophys.J. 789 (2014) L29-L29
Fingerprints of Galactic Loop I on the Cosmic Microwave Background
(2014)
Search for a diffuse flux of astrophysical muon neutrinos with the IceCube 59-string configuration
Physical Review D American Physical Society 89:6 (2014)
Abstract:
A search for high-energy neutrinos was performed using data collected by the IceCube Neutrino Observatory from May 2009 to May 2010, when the array was running in its 59-string configuration. The data sample was optimized to contain muon neutrino induced events with a background contamination of atmospheric muons of less than 1%. These data, which are dominated by atmospheric neutrinos, are analyzed with a global likelihood fit to search for possible contributions of prompt atmospheric and astrophysical neutrinos, neither of which have yet been identified. Such signals are expected to follow a harder energy spectrum than conventional atmospheric neutrinos. In addition, the zenith angle distribution differs for astrophysical and atmospheric signals. A global fit of the reconstructed energies and directions of observed events is performed, including possible neutrino flux contributions for an astrophysical signal and atmospheric backgrounds as well as systematic uncertainties of the experiment and theoretical predictions. The best fit yields an astrophysical signal flux for νμ+ν̄μ of E2·Φ(E)=0.25×10-8GeVcm-2s-1sr-1, and a zero prompt component. Although the sensitivity of this analysis for astrophysical neutrinos surpasses the Waxman and Bahcall upper bound, the experimental limit at 90% confidence level is a factor of 1.5 above at a flux of E2·Φ(E)=1.44×10-8GeVcm-2s-1sr-1.AMS-02 data confronts acceleration of cosmic ray secondaries in nearby sources
ArXiv 1402.0855 (2014)