The unbearable lightness of being: CDMS versus XENON
ArXiv 1304.6066 (2013)
Abstract:
The CDMS-II collaboration has reported 3 events in a Si detector, which are consistent with being nuclear recoils due to scattering of Galactic dark matter particles with a mass of about 8.6 GeV and a cross-section on neutrons of about 2 x 10^-41 cm^2. While a previous result from the XENON10 experiment has supposedly ruled out such particles as dark matter, we find by reanalysing the XENON10 data that this is not the case. Some tension remains however with the upper limit placed by the XENON100 experiment, independently of astrophysical uncertainties concerning the Galactic dark matter distribution. We explore possible ways of ameliorating this tension by altering the properties of dark matter interactions. Nevertheless, even with standard couplings, light dark matter is consistent with both CDMS and XENON10/100.First observation of PeV-energy neutrinos with IceCube
ArXiv 1304.5356 (2013)
Abstract:
We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 $\pm$ 0.16 and 1.14 $\pm$ 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current $\nu_{e,\mu,\tau}$ ($\bar\nu_{e,\mu,\tau}$) or charged-current $\nu_{e}$ ($\bar\nu_{e}$) interactions within the IceCube detector. The events were discovered in a search for ultra-high energy neutrinos using data corresponding to 615.9 days effective livetime. The expected number of atmospheric background is $0.082 \pm 0.004 \text{(stat)}^{+0.041}_{-0.057} \text{(syst)}$. The probability to observe two or more candidate events under the atmospheric background-only hypothesis is $2.9\times10^{-3}$ ($2.8\sigma$) taking into account the uncertainty on the expected number of background events. These two events could be a first indication of an astrophysical neutrino flux, the moderate significance, however, does not permit a definitive conclusion at this time.Ultrahigh Energy Neutrinos at the Pierre Auger Observatory
ArXiv 1304.163 (2013)
Abstract:
The observation of ultrahigh energy (UHE) neutrinos has become a priority in experimental astroparticle physics. UHE neutrinos can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going neutrinos) or in the Earth crust (Earth-skimming neutrinos), producing air showers that can be observed with arrays of detectors at the ground. With the Surface Detector Array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e. after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE neutrinos in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE neutrinos in the EeV range and above.Loops and spurs: The angular power spectrum of the Galactic synchrotron background
ArXiv 1304.1078 (2013)