Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

The unbearable lightness of being: CDMS versus XENON

(2013)

Authors:

Mads T Frandsen, Felix Kahlhoefer, Christopher McCabe, Subir Sarkar, Kai Schmidt-Hoberg
More details from the publisher

First observation of PeV-energy neutrinos with IceCube

ArXiv 1304.5356 (2013)

Authors:

IceCube Collaboration, MG Aartsen, R Abbasi, Y Abdou, M Ackermann, J Adams, JA Aguilar, M Ahlers, D Altmann, J Auffenberg, X Bai, M Baker, SW Barwick, V Baum, R Bay, JJ Beatty, S Bechet, J Becker Tjus, K-H Becker, M Bell, ML Benabderrahmane, S BenZvi, J Berdermann, P Berghaus, D Berley, E Bernardini, A Bernhard, D Bertrand, DZ Besson, G Binder, D Bindig, M Bissok, E Blaufuss, J Blumenthal, DJ Boersma, S Bohaichuk, C Bohm, D Bose, S Böser, O Botner, L Brayeur, H-P Bretz, AM Brown, R Bruijn, J Brunner, M Carson, J Casey, M Casier, D Chirkin, A Christov, B Christy, K Clark, F Clevermann, S Coenders, S Cohen, DF Cowen, AH Cruz Silva, M Danninger, J Daughhetee, JC Davis, C De Clercq, S De Ridder, P Desiati, M de With, T DeYoung, JC Díaz-Vélez, M Dunkman, R Eagan, B Eberhardt, J Eisch, RW Ellsworth, S Euler, PA Evenson, O Fadiran, AR Fazely, A Fedynitch, J Feintzeig, T Feusels, K Filimonov, C Finley, T Fischer-Wasels, S Flis, A Franckowiak, R Franke, K Frantzen, T Fuchs, TK Gaisser, J Gallagher, L Gerhardt, L Gladstone, T Glüsenkamp, A Goldschmidt, G Golup, JG Gonzalez, JA Goodman, D Góra, D Grant, A Groß, M Gurtner, C Ha, A Haj Ismail, P Hallen, A Hallgren, F Halzen, K Hanson, D Heereman, D Heinen, K Helbing, R Hellauer, S Hickford, GC Hill, KD Hoffman, R Hoffmann, A Homeier, K Hoshina, W Huelsnitz, PO Hulth, K Hultqvist, S Hussain, A Ishihara, E Jacobi, J Jacobsen, K Jagielski, GS Japaridze, K Jero, O Jlelati, B Kaminsky, A Kappes, T Karg, A Karle, JL Kelley, J Kiryluk, F Kislat, J Kläs, SR Klein, J-H Köhne, G Kohnen, H Kolanoski, L Köpke, C Kopper, S Kopper, DJ Koskinen, M Kowalski, M Krasberg, K Krings, G Kroll, J Kunnen, N Kurahashi, T Kuwabara, M Labare, H Landsman, MJ Larson, M Lesiak-Bzdak, M Leuermann, J Leute, J Lünemann, J Madsen, R Maruyama, K Mase, HS Matis, F McNally, K Meagher, M Merck, P Mészáros, T Meures, S Miarecki, E Middell, N Milke, J Miller, L Mohrmann, T Montaruli, R Morse, R Nahnhauer, U Naumann, H Niederhausen, SC Nowicki, DR Nygren, A Obertacke, S Odrowski, A Olivas, M Olivo, A O'Murchadha, L Paul, JA Pepper, C Pérez de los Heros, C Pfendner, D Pieloth, E Pinat, N Pirk, J Posselt, PB Price, GT Przybylski, L Rädel, M Rameez, K Rawlins, P Redl, R Reimann, E Resconi, W Rhode, M Ribordy, M Richman, B Riedel, JP Rodrigues, C Rott, T Ruhe, B Ruzybayev, D Ryckbosch, SM Saba, T Salameh, H-G Sander, M Santander, S Sarkar, K Schatto, M Scheel, F Scheriau, T Schmidt, M Schmitz, S Schoenen, S Schöneberg, A Schönwald, A Schukraft, L Schulte, O Schulz, D Seckel, Y Sestayo, S Seunarine, C Sheremata, MWE Smith, M Soiron, D Soldin, GM Spiczak, C Spiering, M Stamatikos, T Stanev, A Stasik, T Stezelberger, RG Stokstad, A Stößl, EA Strahler, R Ström, GW Sullivan, H Taavola, I Taboada, A Tamburro, S Ter-Antonyan, G Tešić, S Tilav, PA Toale, S Toscano, M Usner, D van der Drift, N van Eijndhoven, A Van Overloop, J van Santen, M Vehring, M Voge, M Vraeghe, C Walck, T Waldenmaier, M Wallraff, R Wasserman, Ch Weaver, M Wellons, C Wendt, S Westerhoff, N Whitehorn, K Wiebe, CH Wiebusch, DR Williams, H Wissing, M Wolf, TR Wood, K Woschnagg, C Xu, DL Xu, XW Xu, JP Yanez, G Yodh, S Yoshida, P Zarzhitsky, J Ziemann, S Zierke, A Zilles, M Zoll

Abstract:

We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 $\pm$ 0.16 and 1.14 $\pm$ 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current $\nu_{e,\mu,\tau}$ ($\bar\nu_{e,\mu,\tau}$) or charged-current $\nu_{e}$ ($\bar\nu_{e}$) interactions within the IceCube detector. The events were discovered in a search for ultra-high energy neutrinos using data corresponding to 615.9 days effective livetime. The expected number of atmospheric background is $0.082 \pm 0.004 \text{(stat)}^{+0.041}_{-0.057} \text{(syst)}$. The probability to observe two or more candidate events under the atmospheric background-only hypothesis is $2.9\times10^{-3}$ ($2.8\sigma$) taking into account the uncertainty on the expected number of background events. These two events could be a first indication of an astrophysical neutrino flux, the moderate significance, however, does not permit a definitive conclusion at this time.
Details from ArXiV
More details from the publisher
Details from ORA
More details
More details

Ultrahigh Energy Neutrinos at the Pierre Auger Observatory

ArXiv 1304.163 (2013)

Abstract:

The observation of ultrahigh energy (UHE) neutrinos has become a priority in experimental astroparticle physics. UHE neutrinos can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going neutrinos) or in the Earth crust (Earth-skimming neutrinos), producing air showers that can be observed with arrays of detectors at the ground. With the Surface Detector Array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e. after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHE neutrinos in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHE neutrinos in the EeV range and above.
Details from ArXiV
More details from the publisher
Details from ORA
More details

Loops and spurs: The angular power spectrum of the Galactic synchrotron background

ArXiv 1304.1078 (2013)

Authors:

Philipp Mertsch, Subir Sarkar

Abstract:

We present a new model of the diffuse Galactic synchrotron radiation, concentrating on its angular anisotropies. While previous studies have focussed on either the variation of the emissivity on large (kpc) scales, or on fluctuations due to MHD turbulence in the interstellar medium, we unify these approaches to match the angular power spectrum. We note that the usual turbulence cascade calculation ignores spatial correlations at the injection scale due to compression of the interstellar medium by old supernova remnants -- the 'radio loops', only four of which are visible by eye in radio maps. This new component naturally provides the otherwise missing power on intermediate and small scales in the all-sky map at 408 MHz. Our model can enable more reliable subtraction of the synchrotron foreground for studies of CMB anisotropies (both in temperature and polarisation) or searches for dark matter annihilation. We conclude with some remarks on the relevance to modelling of the polarised foreground.
Details from ArXiV
More details from the publisher
Details from ORA
More details

Loops and spurs: The angular power spectrum of the Galactic synchrotron background

(2013)

Authors:

Philipp Mertsch, Subir Sarkar
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 160
  • Page 161
  • Page 162
  • Page 163
  • Current page 164
  • Page 165
  • Page 166
  • Page 167
  • Page 168
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet