Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • FASER2
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Non-Gaussianity from violation of slow-roll in multiple inflation

(2009)

Authors:

Shaun Hotchkiss, Subir Sarkar
More details from the publisher

On cosmic ray acceleration in supernova remnants and the FERMI/PAMELA data

ArXiv 0909.4060 (2009)

Authors:

Markus Ahlers, Philipp Mertsch, Subir Sarkar

Abstract:

We discuss recent observations of high energy cosmic ray positrons and electrons in the context of hadronic interactions in supernova remnants, the suspected accelerators of galactic cosmic rays. Diffusive shock acceleration can harden the energy spectrum of secondary positrons relative to that of the primary protons (and electrons) and thus explain the rise in the positron fraction observed by PAMELA above 10 GeV. We normalize the hadronic interaction rate by holding pion decay to be responsible for the gamma-rays detected by HESS from some SNRs. By simulating the spatial and temporal distribution of SNRs in the Galaxy according to their known statistics, we are able to then fit the electron (plus positron) energy spectrum measured by Fermi. It appears that IceCube has good prospects for detecting the hadronic neutrino fluxes expected from nearby SNRs.
Details from ArXiV
More details from the publisher

On cosmic ray acceleration in supernova remnants and the FERMI/PAMELA data

(2009)

Authors:

Markus Ahlers, Philipp Mertsch, Subir Sarkar
More details from the publisher

Testing astrophysical models for the PAMELA positron excess with cosmic ray nuclei.

Phys Rev Lett 103:8 (2009) 081104

Authors:

Philipp Mertsch, Subir Sarkar

Abstract:

The excess in the positron fraction measured by PAMELA has been interpreted as due to annihilation or decay of dark matter in the Galaxy. More prosaically it has been ascribed to direct production of positrons by nearby pulsars or due to pion production during diffusive shock acceleration of hadronic cosmic rays in nearby sources. We point out that measurements of secondary cosmic ray nuclei can discriminate between these possibilities. New data on the titanium-to-iron ratio support the hadronic source model above and enable a prediction for the boron-to-carbon ratio at energies above 100 GeV.
More details from the publisher
More details
Details from ArXiV

Does cosmological structure formation require dark energy?

EAS Publications Series 36 (2009) 3-9

Abstract:

Precision measurements of anisotropies in the cosmic microwave background and of the clustering of large-scale structure have supposedly established that the universe is presently dominated by "dark energy" which has negative pressure and behaves similarly to a cosmological constant. This is based on the assumption that the primordial density perturbation has a nearly scale-invariant power-law spectrum and that the dark matter consists of "cold" particles. However there are theoretical and observational indications that the spectrum is not scale-free and it is known that sub-eV mass neutrinos contribute a small component of hot dark matter. This would be sufficient to fit the same observational data without requiring any dark energy. © EAS, EDP Sciences 2009.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 195
  • Page 196
  • Page 197
  • Page 198
  • Current page 199
  • Page 200
  • Page 201
  • Page 202
  • Page 203
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet