Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Light asymmetric dark matter

Proceedings of the 6th Patras Workshop on Axions, WIMPs and WISPs, PATRAS 2010 (2010) 158-163

Authors:

MT Frandsen, S Sarkar

Abstract:

Stable relic particles of mass around 5 GeV with an intrinsic matter-antimatter asymmetry would naturally provide the dark matter. They do not annihilate after being captured by the Sun and the capture rate is exponentially enhanced if they have self-interactions (of the right order to solve the excessive substructure problem of collisionless cold dark matter). Such particles can significantly affect heat transport in the Sun and may solve the 'Solar composition problem' - the predicted small changes in low energy neutrino fluxes are potentially measurable by Borexino and the proposed SNO+ and LENS experiments.
More details from the publisher

Measurement of sound speed vs. depth in South Pole ice for neutrino astronomy

Astroparticle Physics 33:5-6 (2010) 277-286

Authors:

R Abbasi, Y Abdou, M Ackermann, J Adams, JA Aguilar, M Ahlers, K Andeen, J Auffenberg, X Bai, M Baker, SW Barwick, R Bay, JL Bazo Alba, K Beattie, JJ Beatty, S Bechet, JK Becker, KH Becker, ML Benabderrahmane, J Berdermann, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, M Bissok, E Blaufuss, DJ Boersma, C Bohm, J Bolmont, S Böser, O Botner, L Bradley, J Braun, D Breder, T Castermans, D Chirkin, B Christy, J Clem, S Cohen, DF Cowen, MV D'Agostino, M Danninger, CT Day, C De Clercq, L Demirörs, O Depaepe, F Descamps, P Desiati, G De Vries-Uiterweerd, T Deyoung, JC Diaz-Velez, J Dreyer, JP Dumm, MR Duvoort, WR Edwards, R Ehrlich, J Eisch, RW Ellsworth, O Engdegrd, S Euler, PA Evenson, O Fadiran, AR Fazely, T Feusels, K Filimonov, C Finley, MM Foerster, BD Fox, A Franckowiak, R Franke, TK Gaisser, J Gallagher, R Ganugapati, L Gerhardt, L Gladstone, A Goldschmidt, JA Goodman, R Gozzini, D Grant, T Griesel, A Groß, S Grullon, RM Gunasingha, M Gurtner, C Ha, A Hallgren, F Halzen, K Han, K Hanson, Y Hasegawa, J Heise, K Helbing, P Herquet, S Hickford, GC Hill, KD Hoffman, K Hoshina, D Hubert, W Huelsnitz

Abstract:

We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at ∼5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background. © 2010 Elsevier B.V. All rights reserved.
More details from the publisher
More details
Details from ArXiV

Search for muon neutrinos from gamma-ray bursts with the IceCube neutrino telescope

Astrophysical Journal 710:1 (2010) 346-359

Authors:

R Abbasi, Y Abdou, T Abu-Zayyad, J Adams, JA Aguilar, M Ahlers, K Andeen, J Auffenberg, X Bai, M Baker, SW Barwick, R Bay, JL Bazo Alba, K Beattie, JJ Beatty, S Bechet, JK Becker, KH Becker, ML Benabderrahmane, J Berdermann, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, M Bissok, E Blaufuss, DJ Boersma, C Bohm, J Bolmont, O Botner, L Bradley, J Braun, D Breder, T Castermans, D Chirkin, B Christy, J Clem, S Cohen, DF Cowen, MV D'Agostino, M Danninger, CT Day, C De Clercq, L Demirörs, O Depaepe, F Descamps, P Desiati, G De Vries-Uiterweerd, T Deyoung, JC Diaz-Velez, J Dreyer, JP Dumm, MR Duvoort, WR Edwards, R Ehrlich, J Eisch, RW Ellsworth, O Engdegrd, S Euler, PA Evenson, O Fadiran, AR Fazely, T Feusels, K Filimonov, C Finley, MM Foerster, BD Fox, A Franckowiak, R Franke, TK Gaisser, J Gallagher, R Ganugapati, L Gerhardt, L Gladstone, A Goldschmidt, JA Goodman, R Gozzini, D Grant, T Griesel, A Gross, S Grullon, RM Gunasingha, M Gurtner, C Ha, A Hallgren, F Halzen, K Han, K Hanson, Y Hasegawa, J Heise, K Helbing, P Herquet, S Hickford, GC Hill, KD Hoffman, K Hoshina, D Hubert, W Huelsnitz, JP Hül

Abstract:

We present the results of searches for high-energy muon neutrinos from 41 gamma-ray bursts (GRBs) in the northern sky with the IceCube detector in its 22 string configuration active in 2007/2008. The searches cover both the prompt and a possible precursor emission as well as a model-independent, wide time window of -1 hr to +3hr around each GRB. In contrast to previous searches with a large GRB population, we do not utilize a standard Waxman-Bahcall GRB flux for the prompt emission but calculate individual neutrino spectra for all 41 GRBs from the burst parameters measured by satellites. For all of the three time windows, the best estimate for the number of signal events is zero. Therefore, we place 90% CL upper limits on the fluence from the prompt phase of 3.7 × 10 -3 erg cm-2 (72TeV-6.5PeV) and on the fluence from the precursor phase of 2.3 × 10-3 erg cm-2 (2.2-55TeV), where the quoted energy ranges contain 90% of the expected signal events in the detector. The 90% CL upper limit for the wide time window is 2.7 × 10 -3 erg cm-2 (3TeV-2.8PeV) assuming an E -2 flux. © 2010. The American Astronomical Society.
More details from the publisher
More details
Details from ArXiV

Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope: The IceCube Collaboration

European Physical Journal C 69:3 (2010) 361-378

Authors:

R Abbasi, Y Abdou, T Abu-Zayyad, J Adams, JA Aguilar, M Ahlers, K Andeen, J Auffenberg, X Bai, M Baker, SW Barwick, R Bay, JL Bazo Alba, K Beattie, JJ Beatty, S Bechet, JK Becker, KH Becker, ML Benabderrahmane, S BenZvi, J Berdermann, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, M Bissok, E Blaufuss, DJ Boersma, C Bohm, S Böser, O Botner, L Bradley, J Braun, S Buitink, M Carson, D Chirkin, B Christy, J Clem, F Clevermann, S Cohen, C Colnard, DF Cowen, MV D'Agostino, M Danninger, JC Davis, C de Clercq, L Demirörs, O Depaepe, F Descamps, P Desiati, G de Vries-Uiterweerd, T DeYoung, JC Díaz-Vélez, M Dierckxsens, J Dreyer, JP Dumm, MR Duvoort, R Ehrlich, J Eisch, RW Ellsworth, O Engdegård, S Euler, PA Evenson, O Fadiran, AR Fazely, T Feusels, K Filimonov, C Finley, MM Foerster, BD Fox, A Franckowiak, R Franke, TK Gaisser, J Gallagher, M Geisler, L Gerhardt, L Gladstone, T Glüsenkamp, A Goldschmidt, JA Goodman, D Grant, T Griesel, A Groß, S Grullon, M Gurtner, C Ha, A Hallgren, F Halzen, K Han, K Hanson, K Helbing, P Herquet, S Hickford, GC Hill, KD Hoffman, A Homeier, K Hoshina, D Hubert, W Huelsnitz

Abstract:

We present the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with the AMANDA-II detector, a neutrino telescope deployed in the Antarctic ice cap at the Geographic South Pole. The non-observation of a monopole signal in data collected during the year 2000 improves present experimental limits on the flux of relativistic magnetic monopoles: Our flux limit varies between 3.8 × 10-17 cm-2 s-1 sr-1 (for monopoles moving at the vacuum speed of light) and 8.8 × 10-16 cm-2 s-1 sr-1 (for monopoles moving at a speed β=v/c=0.76, just above the Cherenkov threshold in ice). These limits apply to monopoles that are energetic enough to penetrate the Earth and enter the detector from below the horizon. The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, due to the much larger background from down-going atmospheric muons. This looser limit is however valid for a larger class of magnetic monopoles, since the monopoles are not required to pass through the Earth. © 2010 The Author(s).
More details from the publisher

The energy spectrum of atmospheric neutrinos between 2 and 200 TeV with the AMANDA-II detector

Astroparticle Physics 34:1 (2010) 48-58

Authors:

R Abbasi, Y Abdou, T Abu-Zayyad, J Adams, JA Aguilar, M Ahlers, K Andeen, J Auffenberg, X Bai, M Baker, SW Barwick, R Bay, JL Bazo Alba, K Beattie, JJ Beatty, S Bechet, JK Becker, KH Becker, ML Benabderrahmane, J Berdermann, P Berghaus, D Berley, E Bernardini, D Bertrand, DZ Besson, M Bissok, E Blaufuss, DJ Boersma, C Bohm, S Böser, O Botner, L Bradley, J Braun, S Buitink, M Carson, D Chirkin, B Christy, J Clem, F Clevermann, S Cohen, C Colnard, DF Cowen, MV D'Agostino, M Danninger, C De Clercq, L Demirörs, O Depaepe, F Descamps, P Desiati, G De Vries-Uiterweerd, T Deyoung, JC Díaz-Vélez, J Dreyer, JP Dumm, MR Duvoort, R Ehrlich, J Eisch, RW Ellsworth, O Engdegrd, S Euler, PA Evenson, O Fadiran, AR Fazely, A Fedynitch, T Feusels, K Filimonov, C Finley, MM Foerster, BD Fox, A Franckowiak, R Franke, TK Gaisser, J Gallagher, R Ganugapati, M Geisler, L Gerhardt, L Gladstone, T Glüsenkamp, A Goldschmidt, JA Goodman, D Grant, T Griesel, A Groß, S Grullon, RM Gunasingha, M Gurtner, C Ha, A Hallgren, F Halzen, K Han, K Hanson, K Helbing, P Herquet, S Hickford, GC Hill, KD Hoffman, A Homeier, K Hoshina, D Hubert, W Huelsnitz

Abstract:

The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2-200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.
More details from the publisher
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 198
  • Page 199
  • Page 200
  • Page 201
  • Current page 202
  • Page 203
  • Page 204
  • Page 205
  • Page 206
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet