Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • FASER2
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Successful Supersymmetric Inflation

(1995)
More details from the publisher

Erratum

Physics Letters B Elsevier 356:4 (1995) 617
More details from the publisher

Cosmology of the Next-to-Minimal Supersymmetric Standard Model

ArXiv hep-ph/9507333 (1995)

Authors:

SA Abel, S Sarkar, PL White

Abstract:

We discuss the domain wall problem in the Next-to-Minimal Supersymmetric Standard Model, with particular attention to the usual solution of explicit breaking of the discrete symmetry by non-renormalisable operators. This ``solution'' leads to a contradiction between the requirements of cosmology and those of avoiding the destabilisation of the hierarchy.
Details from ArXiV

Cosmology of the Next-to-Minimal Supersymmetric Standard Model

(1995)

Authors:

SA Abel, S Sarkar, PL White
More details from the publisher

On the Cosmological Domain Wall Problem for the Minimally Extended Supersymmetric Standard Model

ArXiv hep-ph/9506359 (1995)

Authors:

SA Abel, S Sarkar, PL White

Abstract:

We study the cosmology of the Supersymmetric Standard Model augmented by a gauge singlet to solve the $\mu$-problem and describe the evolution of the domain walls which are created during electroweak symmetry breaking due to the discrete $Z_{3}$ symmetry in this model. The usual assumption, that non-renormalizable terms induced by gravity (which explicitly break this symmetry) may cause the walls to collapse on a cosmologically safe timescale, is reconsidered. Such terms are constrained by considerations of primordial nucleosynthesis, and also by the fact that by not respecting the $Z_{3}$ symmetry they induce divergences which destabilise the hierarchy and reintroduce the $\mu$--problem. We find that, even when the K\"ahler potential is `non-minimal' (i.e. when the hidden sector couples directly to the visible) the model is either ruled out cosmologically or suffers from a naturalness problem.
Details from ArXiV
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 233
  • Page 234
  • Page 235
  • Page 236
  • Current page 237
  • Page 238
  • Page 239
  • Page 240
  • Page 241
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet