Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • FASER2
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Neutralino Dark Matter in a Class of Unified Theories

ArXiv hep-ph/9209292 (1992)

Authors:

SA Abel, S Sarkar, IB Whittingham

Abstract:

The cosmological significance of the neutralino sector is studied for a class of models in which electroweak symmetry breaking is seeded by a gauge singlet. Extensive use is made of the renormalisation group equations to significantly reduce the parameter space, by deriving analytic expressions for all the supersymmetry-breaking couplings in terms of the universal gaugino mass $m_{1/2}$, the universal scalar mass $m_0$ and the coupling $A$. The composition of the LSP is determined exactly below the W mass, no approximations are made for sfermion masses, and all particle exchanges are considered in calculating the annihilation cross-section; the relic abundance is then obtained by an analytic approximation. We find that in these models, stable neutralinos may make a significant contribution to the dark matter in the universe.
Details from ArXiV
More details from the publisher

Neutralino Dark Matter in a Class of Unified Theories

(1992)

Authors:

SA Abel, S Sarkar, IB Whittingham
More details from the publisher

Cosmic Neutrinos from Unstable Relic Particles

(1992)

Authors:

P Gondolo, G Gelmini, S Sarkar
More details from the publisher

Bound on the tau neutrino magnetic moment from the BEBC beam dump experiment

Physics Letters B 280:1-2 (1992) 153-158

Authors:

AM Cooper-Sarkar, S Sarkar, J Guy, W Venus, PO Hulth, K Hultqvist

Abstract:

We have searched for electrons scattered in the forward direction by neutrinos produced by dumping a 400 GeV/c proton beam on a copper target. We estimate the number of tau neutrinos produced from the decays of Ds mesons in the dump. The data limit the possible magnetic moment of tau neutrinos to be below 5.4×10-7 ωB. This rules out the suggestion that tau neutrinos of mass O(MeV) constitute the dark matter in the universe. © 1992.
More details from the publisher
More details

Astrophysical constraints on massive unstable neutral relic particles

Nuclear Physics, Section B 373:2 (1992) 399-437

Authors:

J Ellis, GB Gelmini, JL Lopez, DV Nanopoulos, S Sarkar

Abstract:

There has recently been renewed interest in massive neutral dark-matter particle candidates with masses greater than ∼ 1 TeV which may be unstable. We re-evaluate the constraints on such particles from the possible effects of their decays on the spectrum of the microwave background-radiation and the primordially synthesised abundances of the light elements, from observations of the diffuse gamma-ray background radiation, and from searches for muons and neutrinos in nucleon-decay and cosmic-ray detectors. We find that such unstable neutral relics may well have the cosmological critical density if their lifetime exceeds ∼ 1016 yr. We illustrate our arguments by applying them to technicolour baryons and to "cryptons" in superstring-inspired models. © 1992.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 236
  • Page 237
  • Page 238
  • Page 239
  • Current page 240
  • Page 241
  • Page 242
  • Page 243
  • Page 244
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet