Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • FASER2
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Monte Carlo Simulations and Validation of NectarCAM, a Medium Sized Telescope Camera for CTA

Proceedings of Science 395 (2022)

Authors:

TP Armstrong, H Costantini, JF Glicenstein, JP Lenain, U Schwanke, T Tavernier, H Abdalla, H Abe, S Abe, A Abusleme, F Acero, A Acharyya, V Acín Portella, K Ackley, R Adam, C Adams, SS Adhikari, I Aguado-Ruesga, I Agudo, R Aguilera, A Aguirre-Santaella, F Aharonian, A Alberdi, R Alfaro, J Alfaro, C Alispach, R Aloisio, R Alves Batista, JP Amans, L Amati, E Amato, L Ambrogi, G Ambrosi, M Ambrosio, R Ammendola, J Anderson, M Anduze, EO Angüner, LA Antonelli, V Antonuccio, P Antoranz, R Anutarawiramkul, J Aragunde Gutierrez, C Aramo, A Araudo, M Araya, A Arbet-Engels, C Arcaro, V Arendt, C Armand, F Arqueros, L Arrabito, B Arsioli, M Artero, K Asano, Y Ascasíbar, J Aschersleben, M Ashley, P Attinà, P Aubert, CB Singh, D Baack, A Babic, M Backes, V Baena, S Bajtlik, A Baktash, C Balazs, M Balbo, O Ballester, J Ballet, B Balmaverde, A Bamba, R Bandiera, A Baquero Larriva, P Barai, C Barbier, V Barbosa Martins, M Barcelo, M Barkov, M Barnard, L Baroncelli, U Barres de Almeida, JA Barrio, D Bastieri, PI Batista, I Batkovic, C Bauer, R Bautista-González, J Baxter, U Becciani, J Becerra González, Y Becherini, G Beck, J Becker Tjus, W Bednarek, A Belfiore, L Bellizzi, R Belmont

Abstract:

The upcoming Cherenkov Telescope Array (CTA) ground-based gamma-ray observatory will open up our view of the very high energy Universe, offering an improvement in sensitivity of 5-10 times that of previous experiments. NectarCAM is one of the proposed cameras for the Medium-Sized Telescopes (MST) which have been designed to cover the core energy range of CTA, from 100 GeV to 10 TeV. The final camera will be capable of GHz sampling and provide a field of view of 8 degrees with its 265 modules of 7 photomultiplier each (for a total of 1855 pixels). In order to validate the performance of NectarCAM, a partially-equipped prototype has been constructed consisting of only the inner 61-modules. It has so far undergone testing at the integration test-bench facility in CEA Paris-Saclay (France) and on a prototype of the MST structure in Adlershof (Germany). To characterize the performance of the prototype, Monte Carlo simulations were conducted using a detailed model of the 61 module camera in the CORSIKA/sim_telarray framework. This contribution provides an overview of this work including the comparison of trigger and readout performance on test-bench data and trigger and image parameterization performance during on-sky measurements.

New Flux Limits in the Low Relativistic Regime for Magnetic Monopoles at IceCube

Proceedings of Science 395 (2022)

Authors:

FH Lauber, R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, AA Alves, NM Amin, R An, K Andeen, T Anderson, G Anton, C Argüelles, Y Ashida, S Axani, X Bai, AV Balagopal, A Barbano, SW Barwick, B Bastian, V Basu, S Baur, R Bay, JJ Beatty, KH Becker, J Becker Tjus, C Bellenghi, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, M Boddenberg, F Bontempo, J Borowka, S Böser, O Botner, J Böttcher, E Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, S Browne, A Burgman, RT Burley, RS Busse, MA Campana, EG Carnie-Bronca, C Chen, D Chirkin, K Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, C Dappen, P Dave, C De Clercq, JJ DeLaunay, H Dembinski, K Deoskar, S De Ridder, A Desai, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, S Dharani, A Diaz, JC Díaz-Vélez, M Dittmer, H Dujmovic, M Dunkman, MA DuVernois, E Dvorak, T Ehrhardt, P Eller, R Engel, H Erpenbeck, J Evans, PA Evenson, KL Fan, AR Fazely, S Fiedlschuster, AT Fienberg, K Filimonov, C Finley

Abstract:

Magnetic monopoles are hypothetical particles that carry magnetic charge. Depending on their velocity, different light production mechanisms exist to facilitate detection. In this work, a previously unused light production mechanism, luminescence of ice, is introduced. This light production mechanism is nearly independent of the velocity of the incident magnetic monopole and becomes the only viable light production mechanism in the low relativistic regime (0.1-0.55c). An analysis in the low relativistic regime searching for magnetic monopoles in seven years of IceCube data is presented. While no magnetic monopole detection can be claimed, a new flux limit in the low relativistic regime is presented, superseding the previous best flux limit by 2 orders of magnitude.

POCAM in the IceCube Upgrade

Proceedings of Science 395 (2022)

Authors:

N Khera, F Henningsen, R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, AA Alves, NM Amin, R An, K Andeen, T Anderson, G Anton, C Argüelles, Y Ashida, S Axani, X Bai, AV Balagopal, A Barbano, SW Barwick, B Bastian, V Basu, S Baur, R Bay, JJ Beatty, KH Becker, J Becker Tjus, C Bellenghi, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, M Boddenberg, F Bontempo, J Borowka, S Böser, O Botner, J Böttcher, E Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, S Browne, A Burgman, RT Burley, RS Busse, MA Campana, EG Carnie-Bronca, C Chen, D Chirkin, K Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, C Dappen, P Dave, C De Clercq, JJ DeLaunay, H Dembinski, K Deoskar, S De Ridder, A Desai, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, S Dharani, A Diaz, JC Díaz-Vélez, M Dittmer, H Dujmovic, M Dunkman, MA DuVernois, E Dvorak, T Ehrhardt, P Eller, R Engel, H Erpenbeck, J Evans, PA Evenson, KL Fan, AR Fazely, S Fiedlschuster, AT Fienberg, K Filimonov

Abstract:

The IceCube Neutrino Observatory at the geographic South Pole instruments a gigaton of glacial Antarctic ice with over 5000 photosensors. The detector, by now running for over a decade, will be upgraded with seven new densely instrumented strings. The project focuses on the improvement of low-energy and oscillation physics sensitivities as well as re-calibration of the existing detector. Over the last few years we developed a Precision Optical Calibration Module (POCAM) providing self-monitored, isotropic, nanosecond, light pulses for optical calibration of large-volume detectors. Over 20 next-generation POCAMs will be calibrated and deployed in the IceCube Upgrade in order to reduce existing detector systematics. We report a general overview of the POCAM instrument, its performance and calibration procedures.
More details

Performance of the Cherenkov Telescope Array in the presence of clouds

Proceedings of Science 395 (2022)

Authors:

M Pecimotika, K Adamczyk, DD Prester, O Gueta, D Hrupec, G Maier, S Mićanović, L Pavletić, J Sitarek, D Sobczyńska, M Szanecki, H Abdalla, H Abe, S Abe, A Abusleme, F Acero, A Acharyya, V Acín Portella, K Ackley, R Adam, C Adams, SS Adhikari, I Aguado-Ruesga, I Agudo, R Aguilera, A Aguirre-Santaella, F Aharonian, A Alberdi, R Alfaro, J Alfaro, C Alispach, R Aloisio, R Alves Batista, JP Amans, L Amati, E Amato, L Ambrogi, G Ambrosi, M Ambrosio, R Ammendola, J Anderson, M Anduze, EO Angüner, LA Antonelli, V Antonuccio, P Antoranz, R Anutarawiramkul, J Aragunde Gutierrez, C Aramo, A Araudo, M Araya, A Arbet-Engels, C Arcaro, V Arendt, C Armand, T Armstrong, F Arqueros, L Arrabito, B Arsioli, M Artero, K Asano, Y Ascasíbar, J Aschersleben, M Ashley, P Attinà, P Aubert, CB Singh, D Baack, A Babic, M Backes, V Baena, S Bajtlik, A Baktash, C Balazs, M Balbo, O Ballester, J Ballet, B Balmaverde, A Bamba, R Bandiera, A Baquero Larriva, P Barai, C Barbier, V Barbosa Martins, M Barcelo, M Barkov, M Barnard, L Baroncelli, U Barres de Almeida, JA Barrio, D Bastieri, PI Batista, I Batkovic, C Bauer, R Bautista-González, J Baxter, U Becciani, J Becerra González, Y Becherini, G Beck

Abstract:

The Cherenkov Telescope Array (CTA) is the future ground-based observatory for gamma-ray astronomy at very high energies. The atmosphere is an integral part of every Cherenkov telescope. Different atmospheric conditions, such as clouds, can reduce the fraction of Cherenkov photons produced in air showers that reach ground-based telescopes, which may affect the performance. Decreased sensitivity of the telescopes may lead to misconstructed energies and spectra. This study presents the impact of various atmospheric conditions on CTA performance. The atmospheric transmission in a cloudy atmosphere in the wavelength range from 203 nm to 1000 nm was simulated for different cloud bases and different optical depths using the MODerate resolution atmospheric TRANsmission (MODTRAN) code. MODTRAN output files were used as inputs for generic Monte Carlo simulations. The analysis was performed using the MAGIC Analysis and Reconstruction Software (MARS) adapted for CTA. As expected, the effects of clouds are most evident at low energies, near the energy threshold. Even in the presence of dense clouds, high-energy gamma rays may still trigger the telescopes if the first interaction occurs lower in the atmosphere, below the cloud base. A method to analyze very high-energy data obtained in the presence of clouds is presented. The systematic uncertainties of the method are evaluated. These studies help to gain more precise knowledge about the CTA response to cloudy conditions and give insights on how to proceed with data obtained in such conditions. This may prove crucial for alert-based observations and time-critical studies of transient phenomena.

Prospects for Galactic transient sources detection with the Cherenkov Telescope Array

Proceedings of Science 395 (2022)

Authors:

A López-Oramas, A Bulgarelli, S Chaty, M Chernyakova, R Gnatyk, B Hnatyk, D Kantzas, S Markoff, S McKeague, S Mereghetti, E Mestre, A di Piano, P Romano, I Sadeh, O Sergijenko, L Sidoli, A Spolon, E de Ona Wilhelmi, G Piano, L Zampieri, H Abdalla, H Abe, S Abe, A Abusleme, F Acero, A Acharyya, V Acín Portella, K Ackley, R Adam, C Adams, SS Adhikari, I Aguado-Ruesga, I Agudo, R Aguilera, A Aguirre-Santaella, F Aharonian, A Alberdi, R Alfaro, J Alfaro, C Alispach, R Aloisio, R Alves Batista, JP Amans, L Amati, E Amato, L Ambrogi, G Ambrosi, M Ambrosio, R Ammendola, J Anderson, M Anduze, EO Angüner, LA Antonelli, V Antonuccio, P Antoranz, R Anutarawiramkul, J Aragunde Gutierrez, C Aramo, A Araudo, M Araya, A Arbet-Engels, C Arcaro, V Arendt, C Armand, T Armstrong, F Arqueros, L Arrabito, B Arsioli, M Artero, K Asano, Y Ascasíbar, J Aschersleben, M Ashley, P Attinà, P Aubert, CB Singh, D Baack, A Babic, M Backes, V Baena, S Bajtlik, A Baktash, C Balazs, M Balbo, O Ballester, J Ballet, B Balmaverde, A Bamba, R Bandiera, A Baquero Larriva, P Barai, C Barbier, V Barbosa Martins, M Barcelo, M Barkov, M Barnard, L Baroncelli, U Barres de Almeida, JA Barrio, D Bastieri

Abstract:

Several types of Galactic sources, like magnetars, microquasars, novae or pulsar wind nebulae flares, display transient emission in the X-ray band. Some of these sources have also shown emission at MeV-GeV energies. However, none of these Galactic transients have ever been detected in the very-high-energy (VHE; E>100 GeV) regime by any Imaging Air Cherenkov Telescope (IACT). The Galactic Transient task force is a part of the Transient Working group of the Cherenkov Telescope Array (CTA) Consortium. The task force investigates the prospects of detecting the VHE counterpart of such sources, as well as their study following Target of Opportunity (ToO) observations. In this contribution, we will show some of the results of exploring the capabilities of CTA to detect and observe Galactic transients; we assume different array configurations and observing strategies.

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 68
  • Page 69
  • Page 70
  • Page 71
  • Current page 72
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet