Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
where I'd like to be ...

Prof Subir Sarkar

Professor Emeritus

Research theme

  • Particle astrophysics & cosmology
  • Fundamental particles and interactions

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Particle theory
  • FASER2
Subir.Sarkar@physics.ox.ac.uk
Telephone: 01865 (2)73962
Rudolf Peierls Centre for Theoretical Physics, room 60.12
Old homepage
Brief CV
  • About
  • Research
  • Teaching
  • Service
  • Outreach
  • Awards/News
  • IceCube@Oxford
  • Publications

IceCube

Physics World 2013 Breakthrough of the Year
IceCube at Oxford

I am a member since 2004 of the IceCube collaboration which discovered cosmic high energy neutrinos and identified some of their astrophysical sources.

IceCube @ Oxford

Prototype Open Event Reconstruction Pipeline for the Cherenkov Telescope Array

Proceedings of Science 395 (2022)

Authors:

M Nöthe, K Kosack, L Nickel, M Peresano, H Abdalla, H Abe, S Abe, A Abusleme, F Acero, A Acharyya, V Acín Portella, K Ackley, R Adam, C Adams, SS Adhikari, I Aguado-Ruesga, I Agudo, R Aguilera, A Aguirre-Santaella, F Aharonian, A Alberdi, R Alfaro, J Alfaro, C Alispach, R Aloisio, R Alves Batista, JP Amans, L Amati, E Amato, L Ambrogi, G Ambrosi, M Ambrosio, R Ammendola, J Anderson, M Anduze, EO Angüner, LA Antonelli, V Antonuccio, P Antoranz, R Anutarawiramkul, J Aragunde Gutierrez, C Aramo, A Araudo, M Araya, A Arbet-Engels, C Arcaro, V Arendt, C Armand, T Armstrong, F Arqueros, L Arrabito, B Arsioli, M Artero, K Asano, Y Ascasíbar, J Aschersleben, M Ashley, P Attinà, P Aubert, CB Singh, D Baack, A Babic, M Backes, V Baena, S Bajtlik, A Baktash, C Balazs, M Balbo, O Ballester, J Ballet, B Balmaverde, A Bamba, R Bandiera, A Baquero Larriva, P Barai, C Barbier, V Barbosa Martins, M Barcelo, M Barkov, M Barnard, L Baroncelli, U Barres de Almeida, JA Barrio, D Bastieri, PI Batista, I Batkovic, C Bauer, R Bautista-González, J Baxter, U Becciani, J Becerra González, Y Becherini, G Beck, J Becker Tjus, W Bednarek, A Belfiore, L Bellizzi, R Belmont, W Benbow, D Berge

Abstract:

The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory currently under construction. It will improve over the current generation of imaging atmospheric Cherenkov telescopes (IACTs) by a factor of five to ten in sensitivity and it will be able to observe the whole sky from a combination of two sites: a northern site in La Palma, Spain, and a southern one in Paranal, Chile. CTA will also be the first open gamma-ray observatory. Accordingly, the data analysis pipeline is developed as open-source software. The event reconstruction pipeline accepts raw data of the telescopes and processes it to produce suitable input for the higher-level science tools. Its primary tasks include reconstructing the physical properties of each recorded shower and providing the corresponding instrument response functions. ctapipe is a framework providing algorithms and tools to facilitate raw data calibration, image extraction, image parameterization and event reconstruction. Its main focus is currently the analysis of simulated data but it has also been successfully applied for the analysis of data obtained with the first CTA prototype telescopes, such as the Large-Sized Telescope 1 (LST-1). pyirf is a library to calculate IACT instrument response functions, needed to obtain physics results like spectra and light curves, from the reconstructed event lists. Building on these two, protopipe is a prototype for the event reconstruction pipeline for CTA. Recent developments in these software packages will be presented.

Reconstructing Neutrino Energy using CNNs for GeV Scale IceCube Events

Proceedings of Science 395 (2022)

Authors:

J Micallef, R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, AA Alves, NM Amin, R An, K Andeen, T Anderson, G Anton, C Argüelles, Y Ashida, S Axani, X Bai, AV Balagopal, A Barbano, SW Barwick, B Bastian, V Basu, S Baur, R Bay, JJ Beatty, KH Becker, J Becker Tjus, C Bellenghi, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, M Boddenberg, F Bontempo, J Borowka, S Böser, O Botner, J Böttcher, E Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, S Browne, A Burgman, RT Burley, RS Busse, MA Campana, EG Carnie-Bronca, C Chen, D Chirkin, K Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, C Dappen, P Dave, C De Clercq, JJ DeLaunay, H Dembinski, K Deoskar, S De Ridder, A Desai, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, S Dharani, A Diaz, JC Díaz-Vélez, M Dittmer, H Dujmovic, M Dunkman, MA DuVernois, E Dvorak, T Ehrhardt, P Eller, R Engel, H Erpenbeck, J Evans, PA Evenson, KL Fan, AR Fazely, S Fiedlschuster, AT Fienberg, K Filimonov, C Finley

Abstract:

Measurements of neutrinos at and below 10 GeV provide unique constraints of neutrino oscillation parameters as well as probes of potential Non-Standard Interactions (NSI). The IceCube Neutrino Observatory’s DeepCore array is designed to detect neutrinos down to GeV energies. IceCube has built the world’s largest data set of neutrinos >10 GeV, making searches for NSI a computational challenge. This work describes the use of convolutional neural networks (CNNs) to improve the energy reconstruction resolution and speed of reconstructing O(10 GeV) neutrino events in IceCube. Compared to current likelihood-based methods which take seconds to minutes, the CNN is expected to provide approximately a factor of 2 improvement in energy resolution while reducing the reconstruction time per event to milliseconds, which is essential for processing large datasets.
More details

Reconstruction of stereoscopic CTA events using deep learning with CTLearn

Proceedings of Science 395 (2022)

Authors:

T Miener, D Nieto, A Brill, S Spencer, JL Contreras, H Abdalla, H Abe, S Abe, A Abusleme, F Acero, A Acharyya, V Acín Portella, K Ackley, R Adam, C Adams, SS Adhikari, I Aguado-Ruesga, I Agudo, R Aguilera, A Aguirre-Santaella, F Aharonian, A Alberdi, R Alfaro, J Alfaro, C Alispach, R Aloisio, R Alves Batista, JP Amans, L Amati, E Amato, L Ambrogi, G Ambrosi, M Ambrosio, R Ammendola, J Anderson, M Anduze, EO Angüner, LA Antonelli, V Antonuccio, P Antoranz, R Anutarawiramkul, J Aragunde Gutierrez, C Aramo, A Araudo, M Araya, A Arbet-Engels, C Arcaro, V Arendt, C Armand, T Armstrong, F Arqueros, L Arrabito, B Arsioli, M Artero, K Asano, Y Ascasíbar, J Aschersleben, M Ashley, P Attinà, P Aubert, CB Singh, D Baack, A Babic, M Backes, V Baena, S Bajtlik, A Baktash, C Balazs, M Balbo, O Ballester, J Ballet, B Balmaverde, A Bamba, R Bandiera, A Baquero Larriva, P Barai, C Barbier, V Barbosa Martins, M Barcelo, M Barkov, M Barnard, L Baroncelli, U Barres de Almeida, JA Barrio, D Bastieri, PI Batista, I Batkovic, C Bauer, R Bautista-González, J Baxter, U Becciani, J Becerra González, Y Becherini, G Beck, J Becker Tjus, W Bednarek, A Belfiore, L Bellizzi, R Belmont, W Benbow

Abstract:

The Cherenkov Telescope Array (CTA), conceived as an array of tens of imaging atmospheric Cherenkov telescopes (IACTs), is an international project for a next-generation ground-based gamma-ray observatory, aiming to improve on the sensitivity of current-generation instruments a factor of five to ten and provide energy coverage from 20 GeV to more than 300 TeV. Arrays of IACTs probe the very-high-energy gamma-ray sky. Their working principle consists of the simultaneous observation of air showers initiated by the interaction of very-high-energy gamma rays and cosmic rays with the atmosphere. Cherenkov photons induced by a given shower are focused onto the camera plane of the telescopes in the array, producing a multi-stereoscopic record of the event. This image contains the longitudinal development of the air shower, together with its spatial, temporal, and calorimetric information. The properties of the originating very-high-energy particle (type, energy, and incoming direction) can be inferred from those images by reconstructing the full event using machine learning techniques. In this contribution, we present a purely deep-learning driven, full-event reconstruction of simulated, stereoscopic IACT events using CTLearn. CTLearn is a package that includes modules for loading and manipulating IACT data and for running deep learning models, using pixel-wise camera data as input.

Search for Astrophysical Neutrino Transients with IceCube DeepCore

Proceedings of Science 395 (2022)

Authors:

R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, AA Alves, NM Amin, R An, K Andeen, T Anderson, G Anton, C Argüelles, Y Ashida, S Axani, X Bai, AV Balagopal, A Barbano, SW Barwick, B Bastian, V Basu, S Baur, R Bay, JJ Beatty, KH Becker, J Becker Tjus, C Bellenghi, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, M Boddenberg, F Bontempo, J Borowka, S Böser, O Botner, J Böttcher, E Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, S Browne, A Burgman, RT Burley, RS Busse, MA Campana, EG Carnie-Bronca, C Chen, D Chirkin, K Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, C Dappen, P Dave, C De Clercq, JJ DeLaunay, H Dembinski, K Deoskar, S De Ridder, A Desai, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, S Dharani, A Diaz, JC Díaz-Vélez, M Dittmer, H Dujmovic, M Dunkman, MA DuVernois, E Dvorak, T Ehrhardt, P Eller, R Engel, H Erpenbeck, J Evans, PA Evenson, KL Fan, AR Fazely, S Fiedlschuster, AT Fienberg, K Filimonov, C Finley, L Fischer

Abstract:

DeepCore, as a densely instrumented sub-detector of IceCube, extends IceCube’s energy reach down to about 10 GeV, enabling the search for astrophysical transient sources, e.g., choked gamma-ray bursts. While many other past and on-going studies focus on triggered time-dependent analyses, we aim to utilize a newly developed event selection and dataset for an untriggered all-sky time-dependent search for transients. In this work, all-flavor neutrinos are used, where neutrino types are determined based on the topology of the events. We extend the previous DeepCore transient half-sky search to an all-sky search and focus only on short timescale sources (with a duration of 102 ∼ 105 seconds). All-sky sensitivities to transients in an energy range from 10 GeV to 300 GeV will be presented in this poster. We show that DeepCore can be reliably used for all-sky searches for short-lived astrophysical sources.
More details

Searching for High-Energy Neutrinos from Core-Collapse Supernovae with IceCube

Proceedings of Science 395 (2022)

Authors:

J Necker, R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, AA Alves, NM Amin, R An, K Andeen, T Anderson, G Anton, C Argüelles, Y Ashida, S Axani, X Bai, AV Balagopal, A Barbano, SW Barwick, B Bastian, V Basu, S Baur, R Bay, JJ Beatty, KH Becker, J Becker Tjus, C Bellenghi, S BenZvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, M Boddenberg, F Bontempo, J Borowka, S Böser, O Botner, J Böttcher, E Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, S Browne, A Burgman, RT Burley, RS Busse, MA Campana, EG Carnie-Bronca, C Chen, D Chirkin, K Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, C Dappen, P Dave, C De Clercq, JJ DeLaunay, H Dembinski, K Deoskar, S De Ridder, A Desai, P Desiati, KD de Vries, G de Wasseige, M de With, T DeYoung, S Dharani, A Diaz, JC Díaz-Vélez, M Dittmer, H Dujmovic, M Dunkman, MA DuVernois, E Dvorak, T Ehrhardt, P Eller, R Engel, H Erpenbeck, J Evans, PA Evenson, AR Fazely, S Fiedlschuster, AT Fienberg, K Filimonov, C Finley, L Fischer

Abstract:

IceCube is a cubic kilometer neutrino detector array in the Antarctic ice that was designed to search for astrophysical, high-energy neutrinos. It has detected a diffuse flux of astrophysical neutrinos that appears to be of extragalactic origin. A possible contribution to this diffuse flux could stem from core-collapse supernovae. The high-energy neutrinos could either come from the interaction of the ejecta with a dense circumstellar medium or a jet, emanating from the star’s core, that stalls in the star’s envelope. Here, we will present results of a stacking analysis to search for this high-energy neutrino emission from core-collapse supernovae using 7 years of υμ track events from IceCube.
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 69
  • Page 70
  • Page 71
  • Page 72
  • Current page 73
  • Page 74
  • Page 75
  • Page 76
  • Page 77
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet