A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors
Journal of Instrumentation 16:8 (2021)
Authors:
R Abbasi, M Ackermann, J Adams, JA Aguilar, M Ahlers, M Ahrens, C Alispach, AA Alves, NM Amin, R An, K Andeen, T Anderson, I Ansseau, G Anton, C Argüelles, S Axani, X Bai, A Balagopal V., A Barbano, SW Barwick, B Bastian, V Basu, S Baur, R Bay, JJ Beatty, KH Becker, J Becker Tjus, C Bellenghi, S Benzvi, D Berley, E Bernardini, DZ Besson, G Binder, D Bindig, E Blaufuss, S Blot, J Borowka, S Böser, O Botner, J Böttcher, E Bourbeau, J Bourbeau, F Bradascio, J Braun, S Bron, J Brostean-Kaiser, S Browne, A Burgman, RS Busse, MA Campana, C Chen, D Chirkin, K Choi, BA Clark, K Clark, L Classen, A Coleman, GH Collin, JM Conrad, P Coppin, P Correa, DF Cowen, R Cross, P Dave, C De Clercq, JJ Delaunay, H Dembinski, K Deoskar, S De Ridder, A Desai, P Desiati, KD De Vries, G De Wasseige, M De With, T Deyoung, S Dharani, A Diaz, JC Díaz-Vélez, H Dujmovic, M Dunkman, MA Duvernois, E Dvorak, T Ehrhardt, P Eller, R Engel, H Erpenbeck, J Evans, PA Evenson, S Fahey, AR Fazely, S Fiedlschuster, AT Fienberg, K Filimonov, C Finley, L Fischer, D Fox, A Franckowiak, E Friedman, A Fritz, P Fürst
Abstract:
IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment's photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors.