Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

Interpretation of thermal conductance of the ν = 5/2 edge

Physical Review B American Physical Society 97:12 (2018) 121406(R)

Abstract:

Recent experiments [Banerjee et al, arXiv:1710.00492] have measured thermal conductance of the ν = 5/2 edge in a GaAs electron gas and found it to be quantized as K ≈ 5/2 (in appropriate dimensionless units). This result is unexpected, as prior numerical work predicts that the ν = 5/2 state should be the Anti-Pfaffian phase of matter, which should have quantized K = 3/2. The purpose of this paper is to propose a possible solution to this conflict: if the Majorana edge mode of the Anti-Pfaffian does not thermally equilibrate with the other edge modes, then K = 5/2 is expected. I briefly discuss a possible reason for this nonequilibration, and what should be examined further to determine if this is the case.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Gate-tunable double-dome superconductivity in twisted trilayer graphene

Nature Physics Springer Nature (2025)

Authors:

Zekang Zhou, Jin Jiang, Paritosh Karnatak, Ziwei Wang, Glenn Wagner, Kenji Watanabe, Takashi Taniguch, Christian Schönenberger, Siddharth Ashok Parameswaran, Steven H Simon, Mitali Banerjee

Abstract:

Graphene moiré systems are ideal environments for investigating complex phase diagrams and gaining fundamental insights into the mechanisms that underlie them, as they permit controlled manipulation of electronic properties. Magic-angle twisted trilayer graphene has emerged as a key platform for exploring moiré superconductivity due to the robustness of its superconducting order and the ability to tune its energy bands with an electric field. Here we report the direct observation of two domes of superconductivity in the phase diagram of magic-angle twisted trilayer graphene. The dependence of the superconductivity of doped holes on the temperature, magnetic field and bias current shows that it is suppressed near a specific filling of the moiré flat band, leading to a double dome in the phase diagram within a finite range of the displacement field. The transport properties are also indicative of a phase transition and the potentially distinct nature of superconductivity in the two domes. Hartree–Fock calculations incorporating mild strain yield an incommensurate Kekulé spiral state whose effective spin polarization peaks in the regime where superconductivity is suppressed in the experiments.
More details from the publisher
Details from ORA
More details

Putting a new spin on the incommensurate Kekulé spiral: from spin-valley locking and collective modes to fermiology and implications for superconductivity

(2025)

Authors:

Ziwei Wang, Glenn Wagner, Yves H Kwan, Nick Bultinck, Steven H Simon, SA Parameswaran
More details from the publisher

Chern-textured exciton insulators with valley spiral order in moiré materials

Physical Review B American Physical Society (APS) 112:3 (2025) 35130

Authors:

Ziwei Wang, Yves H Kwan, Glenn Wagner, Steven H Simon, Nick Bultinck, Sa Parameswaran

Abstract:

We explore the phase diagrams of moiré materials in search of a class of intervalley-coherent correlated insulating state: the Chern texture insulator (CTI). This phase of matter, proposed in a companion paper [Kwan , .], breaks valley <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mi>U</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </math> symmetry in a nontrivial fashion wherein the valley order parameter is forced to texture in momentum space as a consequence of band topology. Using detailed Hartree-Fock studies, we establish that the CTI emerges as an energetically competitive intermediate-coupling ground state in several moiré systems that lack a twofold rotation symmetry that forbids the single-particle topology essential to the formation of the CTI valley texture. Published by the American Physical Society 2025
More details from the publisher
More details

Textured exciton insulators

Physical Review B (condensed matter and materials physics) American Physical Society 112:3 (2025) 35129

Authors:

Yves H Kwan, Ziwei Wang, Glenn Wagner, Steven Simon, Siddharth Ashok Parameswaran, Nick Bultinck

Abstract:

We introduce and study interacting topological states that arise in time-reversal symmetric bands with an underlying obstruction to forming localized states. If the U(1) valley symmetry linked to independent charge conservation in each time-reversal sector is spontaneously broken, the corresponding “excitonic” order parameter is forced to form a topologically nontrivial texture across the Brillouin zone. We show that the resulting phase, which we dub a textured exciton insulator, cannot be given a local-moment description because of a form of delicate topology. Using toy models of bands with Chern or Euler obstructions to localization, we construct explicit examples of the Chern or Euler texture insulators (CTIs or ETIs) they support, and demonstrate that these are generically competitive ground states at intermediate coupling. We construct field theories that capture the response properties of these new states. Finally, we identify the incommensurate Kekulé spiral phase observed in magic-angle bi- and trilayer graphene as a concrete realization of an ETI.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet