Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

Interpretation of thermal conductance of the ν = 5/2 edge

Physical Review B American Physical Society 97:12 (2018) 121406(R)

Abstract:

Recent experiments [Banerjee et al, arXiv:1710.00492] have measured thermal conductance of the ν = 5/2 edge in a GaAs electron gas and found it to be quantized as K ≈ 5/2 (in appropriate dimensionless units). This result is unexpected, as prior numerical work predicts that the ν = 5/2 state should be the Anti-Pfaffian phase of matter, which should have quantized K = 3/2. The purpose of this paper is to propose a possible solution to this conflict: if the Majorana edge mode of the Anti-Pfaffian does not thermally equilibrate with the other edge modes, then K = 5/2 is expected. I briefly discuss a possible reason for this nonequilibration, and what should be examined further to determine if this is the case.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Chern-textured exciton insulators with valley spiral order in moiré materials

Physical Review B American Physical Society (APS) 112:3 (2025) 35130

Authors:

Ziwei Wang, Yves H Kwan, Glenn Wagner, Steven H Simon, Nick Bultinck, Sa Parameswaran

Abstract:

We explore the phase diagrams of moiré materials in search of a class of intervalley-coherent correlated insulating state: the Chern texture insulator (CTI). This phase of matter, proposed in a companion paper [Kwan , .], breaks valley <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mi>U</mi> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </math> symmetry in a nontrivial fashion wherein the valley order parameter is forced to texture in momentum space as a consequence of band topology. Using detailed Hartree-Fock studies, we establish that the CTI emerges as an energetically competitive intermediate-coupling ground state in several moiré systems that lack a twofold rotation symmetry that forbids the single-particle topology essential to the formation of the CTI valley texture. Published by the American Physical Society 2025
More details from the publisher
More details

Textured exciton insulators

Physical Review B (condensed matter and materials physics) American Physical Society 112:3 (2025) 35129

Authors:

Yves H Kwan, Ziwei Wang, Glenn Wagner, Steven Simon, Siddharth Ashok Parameswaran, Nick Bultinck

Abstract:

We introduce and study interacting topological states that arise in time-reversal symmetric bands with an underlying obstruction to forming localized states. If the U(1) valley symmetry linked to independent charge conservation in each time-reversal sector is spontaneously broken, the corresponding “excitonic” order parameter is forced to form a topologically nontrivial texture across the Brillouin zone. We show that the resulting phase, which we dub a textured exciton insulator, cannot be given a local-moment description because of a form of delicate topology. Using toy models of bands with Chern or Euler obstructions to localization, we construct explicit examples of the Chern or Euler texture insulators (CTIs or ETIs) they support, and demonstrate that these are generically competitive ground states at intermediate coupling. We construct field theories that capture the response properties of these new states. Finally, we identify the incommensurate Kekulé spiral phase observed in magic-angle bi- and trilayer graphene as a concrete realization of an ETI.
More details from the publisher
Details from ORA
More details

A closed band-projected density algebra must be Girvin-MacDonald-Platzman

Physical Review Letters American Physical Society 134 (2025) 136502

Authors:

Ziwei Wang, Steven Simon

Abstract:

The band-projected density operators in a Landau level obey the Girvin-MacDonald-Platzman (GMP) algebra, and a large amount of effort in the study of fractional Chern insulators has been directed toward approximating this algebra in a Chern band. In this Letter, we prove that the GMP algebra, up to form factors, is the only closed algebra that projected density operators can satisfy in two and three dimensions, highlighting the central place it occupies in the study of Chern bands in general. A number of interesting corollaries follow.

More details from the publisher
Details from ORA
More details
More details

Phase separation in the putative fractional quantum hall A phases

Physical Review B: Condensed Matter and Materials Physics American Physical Society 111 (2025) 045102

Authors:

Steven Simon, Ajit Balram

Abstract:

We use several techniques to probe the wave functions proposed to describe the A phases by Das, Das, and Mandal [Phys. Rev. Lett. 131, 056202 (2023); Phys. Rev. Lett. 132, 106501 (2024); Phys. Rev. B 110, L121303 (2024).]. As opposed to representing fractional quantum Hall liquids, we find these wave functions to describe states that clearly display strong phase separation. In the process of exploring these wave functions, we have also constructed several new methods for diagnosing phase separation and generating such wave functions numerically. Finally, we uncover a new property of entanglement spectra that can be used as a check for the accuracy of numerics.
More details from the publisher
Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet