Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

Superconductivity from repulsive interactions in Bernal-stacked bilayer graphene

(2023)

Authors:

Glenn Wagner, Yves H Kwan, Nick Bultinck, Steven H Simon, SA Parameswaran
More details from the publisher
Details from ArXiV

Topological Quantum

, 2023

Abstract:

At the intersection of physics, mathematics, and computer science, an exciting new field of study has formed, known as “topological quantum.” This research field examines the deep connections between the theory of knots, special types of subatomic particles known as anyons, certain phases of matter, and quantum computation. This book elucidates this nexus, drawing in topics ranging from quantum gravity to topology to experimental condensed matter physics. Requiring only an elementary background in quantum mechanics, this book is appropriate for all readers, from advanced undergraduates to the professional practitioner. The material in presented in a down-to-earth and entertaining way that is far less abstract than most of what is in the literature. While introducing the crucial concepts and placing them in context, the subject is presented without resort to the highly mathematical category theory that underlies the field. This book will be of interest to mathematicians and computer scientists as well as physicists working on a wide range of topics. “Topological quantum” has increasingly been a focus point in the fields of condensed matter physics and quantum information over the last few decades, and the forefront of research now builds on the basic ideas presented in this book. Those interested in working in these field will find this book to be an invaluable introduction as well as a crucial reference.
More details from the publisher

Statistical mechanics of dimers on quasiperiodic Ammann-Beenker tilings

Physical Review B American Physical Society 106:9 (2022) 94202

Authors:

Jerome Lloyd, Sounak Biswas, Steven H Simon, Sa Parameswaran, Felix Flicker

Abstract:

We study classical dimers on two-dimensional quasiperiodic Ammann-Beenker (AB) tilings. Using the discrete scale-symmetry of quasiperiodic tilings, we prove that each infinite tiling admits “perfect matchings”, where every vertex is touched by one dimer. We show the appearance of so-called monomer pseudomembranes. These are sets of edges, which collectively host exactly one dimer, which bound certain eightfold-symmetric regions of the tiling. Regions bounded by pseudomembranes are matched together in a way that resembles perfect matchings of the tiling itself. These structures emerge at all scales, suggesting the preservation of collective dimer fluctuations over long distances. We provide numerical evidence, via Monte Carlo simulations, of dimer correlations consistent with power laws over a hierarchy of different lengthscales. We also find evidence of rich monomer correlations, with monomers displaying a pattern of attraction and repulsion to different regions within pseudomembranes, along with signatures of deconfinement within certain annular regions of the tiling.
More details from the publisher
Details from ORA
More details

Straightening Out the Frobenius-Schur Indicator

(2022)

Authors:

Steven H Simon, Joost K Slingerland
More details from the publisher
Details from ArXiV

The superconductivity of Sr2RuO4 under c-axis uniaxial stress

Nature Communications Springer Nature 13 (2022) 4596

Authors:

Fabian Jerzembeck, Henrik S Roising, Alexander Steppke, Helge Rosner, Dmitry A Sokolov, Naoki Kikugawa,, Thomas Scaffidi, Steven Simon, Andrew P Mackenzie, Clifford W Hicks

Abstract:

Applying in-plane uniaxial pressure to strongly correlated low-dimensional systems has been shown to tune the electronic structure dramatically. For example, the unconventional superconductor Sr2RuO4 can be tuned through a single Van Hove point, resulting in strong enhancement of both Tc and Hc2. Out-of-plane (c axis) uniaxial pressure is expected to tune the quasi-two-dimensional structure even more strongly, by pushing it towards two Van Hove points simultaneously. Here, we achieve a record uniaxial stress of 3.2 GPa along the c axis of Sr2RuO4. Hc2 increases, as expected for increasing density of states, but unexpectedly Tc falls. As a first attempt to explain this result, we present three-dimensional calculations in the weak interaction limit. We find that within the weak-coupling framework there is no single order parameter that can account for the contrasting effects of in-plane versus c-axis uniaxial stress, which makes this new result a strong constraint on theories of the superconductivity of Sr2RuO4.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet