Skyrmions in twisted bilayer graphene: stability, pairing, and crystallization
Physical Review X American Physical Society 12:3 (2022) 031020
Abstract:
We study the excitations that emerge upon doping the translationally invariant correlated insulating states in magic-angle twisted bilayer graphene at various integer filling factors ν. We identify parameter regimes where these are excitations associated with skyrmion textures in the spin or pseudospin degrees of freedom, and explore both short-distance pairing effects and the formation of long-range ordered skyrmion crystals. We perform a comprehensive analysis of the pseudospin skyrmions that emerge upon doping insulators at even ν, delineating the regime in parameter space where these are the lowest-energy charged excitations by means of self-consistent Hartree-Fock calculations on the interacting Bistritzer-MacDonald model. We explicitly demonstrate the purely electron-mediated pairing of skyrmions, a key ingredient behind a recent proposal of skyrmion superconductivity. Building upon this, we construct hopping models to extract the effective masses of paired skyrmions, and discuss our findings and their implications for skyrmion superconductivity in relation to experiments, focusing on the dome-shaped dependence of the transition temperature on the twist angle. We also investigate the properties of spin skyrmions about the quantized anomalous Hall insulator at ν=+3. In both cases, we demonstrate the formation of robust spin or pseudospin skyrmion crystals upon doping to a finite density away from integer filling.Quantifying information scrambling via classical shadow tomography on programmable quantum simulators
Physical Review A: Atomic, Molecular and Optical Physics American Physical Society 106 (2022) 012441
Abstract:
We develop techniques to probe the dynamics of quantum information, and implement them experimentally on an IBM superconducting quantum processor. Our protocols adapt shadow tomography for the study of time evolution channels rather than of quantum states, and rely only on single-qubit operations and measurements. We identify two unambiguous signatures of quantum information scrambling, neither of which can be mimicked by dissipative processes, and relate these to many-body teleportation. By realizing quantum chaotic dynamics in experiment, we measure both signatures, and support our results with numerical simulations of the quantum system. We additionally investigate operator growth under this dynamics, and observe behaviour characteristic of quantum chaos. As our methods require only a single quantum state at a time, they can be readily applied on a wide variety of quantum simulators.Excitations in the Higher Lattice Gauge Theory Model for Topological Phases III: the (3+1)-Dimensional Case
(2022)
Excitonic fractional quantum Hall hierarchy in Moiré heterostructures
Physical Review B American Physical Society 105:23 (2022) 231521
Abstract:
We consider fractional quantum Hall states in systems where two flat Chern number C=±1 bands are labeled by an approximately conserved 'valley' index and interchanged by time reversal symmetry. At filling factor ν = 1 this setting admits an unusual hierarchy of correlated phases of excitons, neutral particle-hole pair excitations of a fully valley-polarized 'orbital ferromagnet’ parent state where all electrons occupy a single valley. Excitons experience an effective magnetic field due to the Chern numbers of the underlying bands. This obstructs their condensation in favor of a variety of crystalline orders and gapped and gapless liquid states. All these have the same quantized charge Hall response and are electrically incompressible, but differ in their edge structure, orbital magnetization, and hence valley and thermal responses. We explore the relevance of this scenario for moir'e heterostructures of bilayer graphene on a hexagonal boron nitride substrate.Global phase diagram of the normal state of twisted bilayer graphene
Physical Review Letters American Physical Society 128:15 (2022) 156401