Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

Finite temperature effects on Majorana bound states in chiral p-wave superconductors

SciPost Physics SciPost 6:55 (2019) 1-18

Authors:

HS Roising, R Ilan, T Meng, Steven Simon, Felix Flicker
More details from the publisher
Details from ORA
More details
Details from ArXiV

Finite temperature effects on Majorana bound states in chiral $p$-wave superconductors

(2019)

Authors:

Henrik Schou Røising, Roni Ilan, Tobias Meng, Steven H Simon, Felix Flicker
More details from the publisher

Interaction effects and charge quantization in single-particle quantum dot emitters

Physical Review Letters American Physical Society (2019)

Authors:

Glenn Wagner, Dung Nguyen, Dmitry Kovrizhin, Steven Simon

Abstract:

We discuss a theoretical model of an on-demand single-particle emitter that employs a quantum dot, attached to an integer or fractional quantum Hall edge state. Via an exact mapping of the model onto the spin-boson problem we show that Coulomb interactions between the dot and the chiral quantum Hall edge state, unavoidable in this setting, lead to a destruction of precise charge quantization in the emitted wave-packet. Our findings cast doubts on the viability of this set-up as a single-particle source of quantized charge pulses. We further show how to use a spin-boson master equation approach to explicitly calculate the current pulse shape in this set-up.
More details from the publisher
Details from ORA
More details
More details

Finite temperature effects on Majorana bound states in chiral $p$-wave superconductors

(2019)

Authors:

Henrik Schou Røising, Roni Ilan, Tobias Meng, Steven H Simon, Felix Flicker
More details from the publisher

Approximating observables on eigenstates of large many-body localized systems

Physical review B: Condensed matter and materials physics American Physical Society 99 (2019) 104201

Authors:

Abishek Kulshreshtha, Arijeet Pal, Thorsten Wahl, Steven Simon

Abstract:

Eigenstates of fully many-body localized (FMBL) systems can be organized into spin algebras based on quasilocal operators called l-bits. These spin algebras define quasilocal l-bit measurement (τzi) and l-bit flip (τxi) operators. For a disordered Heisenberg spin chain in the MBL regime we approximate l-bit flip operators by finding them exactly on small windows of systems and extending them onto the whole system by exploiting their quasilocal nature. We subsequently use these operators to represent approximate eigenstates. We then describe a method to calculate products of local observables on these eigenstates for systems of size L in O(L2) time. This algorithm is used to compute the error of the approximate eigenstates.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Current page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet