Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

Partial Equilibration of the Anti-Pfaffian edge due to Majorana Disorder

(2019)

Authors:

Steven H Simon, Bernd Rosenow
More details from the publisher

Transport in bilayer graphene near charge neutrality: Which scattering mechanisms are important?

(2019)

Authors:

Glenn Wagner, Dung X Nguyen, Steven H Simon
More details from the publisher

Finite temperature effects on Majorana bound states in chiral p-wave superconductors

SciPost Physics SciPost 6:55 (2019) 1-18

Authors:

HS Roising, R Ilan, T Meng, Steven Simon, Felix Flicker
More details from the publisher
Details from ORA
More details
Details from ArXiV

Finite temperature effects on Majorana bound states in chiral $p$-wave superconductors

(2019)

Authors:

Henrik Schou Røising, Roni Ilan, Tobias Meng, Steven H Simon, Felix Flicker
More details from the publisher

Interaction effects and charge quantization in single-particle quantum dot emitters

Physical Review Letters American Physical Society (2019)

Authors:

Glenn Wagner, Dung Nguyen, Dmitry Kovrizhin, Steven Simon

Abstract:

We discuss a theoretical model of an on-demand single-particle emitter that employs a quantum dot, attached to an integer or fractional quantum Hall edge state. Via an exact mapping of the model onto the spin-boson problem we show that Coulomb interactions between the dot and the chiral quantum Hall edge state, unavoidable in this setting, lead to a destruction of precise charge quantization in the emitted wave-packet. Our findings cast doubts on the viability of this set-up as a single-particle source of quantized charge pulses. We further show how to use a spin-boson master equation approach to explicitly calculate the current pulse shape in this set-up.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet