Theory of the Josephson Junction Laser
Physical Review Letters American Physical Society 121 (2018)
Abstract:
We develop an analytic theory for the recently demonstrated Josephson Junction laser (Science 355, 939, 2017). By working in the time-domain representation (rather than the frequency-domain) a single non-linear equation is obtained for the dynamics of the device, which is fully solvable in some regimes of operation. The nonlinear drive is seen to lead to mode-locked output, with a period set by the round-trip time of the resonant cavity.Effective Edge State Dynamics in the Fractional Quantum Hall Effect
(2018)
Structure of edge-state inner products in the fractional quantum Hall effect
Physical Review B American Physical Society 97:15 (2018) 155108
Abstract:
We analyze the inner products of edge state wave functions in the fractional quantum Hall effect, specifically for the Laughlin and Moore-Read states. We use an effective description for these inner products given by a large-N expansion ansatz proposed in a recent work by J. Dubail, N. Read, and E. Rezayi [Phys. Rev. B 86, 245310 (2012)]. As noted by these authors, the terms in this ansatz can be constrained using symmetry, a procedure we perform to high orders. We then check this conjecture by calculating the overlaps exactly for small system sizes and compare the numerics with our high-order expansion. We find the effective description to be very accurate.Size constraints on a Majorana beam-splitter interferometer: Majorana coupling and surface-bulk scattering
Physical Review B American Physical Society 97:11 (2018) 115424
Abstract:
Topological insulator surfaces in proximity to superconductors have been proposed as a way to produce Majorana fermions in condensed matter physics. One of the simplest proposed experiments with such a system is Majorana interferometry. Here we consider two possibly conflicting constraints on the size of such an interferometer. Coupling of a Majorana mode from the edge (the arms) of the interferometer to vortices in the center of the device sets a lower bound on the size of the device. On the other hand, scattering to the usually imperfectly insulating bulk sets an upper bound. From estimates of experimental parameters, we find that typical samples may have no size window in which the Majorana interferometer can operate, implying that a new generation of more highly insulating samples must be explored.On the Interpretation of Thermal Conductance of the nu=5/2 Edge
(2018)