Switching noise as a probe of statistics in the fractional quantum Hall effect
Physical Review Letters 96:22 (2006)
Abstract:
We propose an experiment to probe the unconventional quantum statistics of quasiparticles in fractional quantum Hall states by measurement of current noise. The geometry we consider is that of a Hall bar where two quantum point contacts introduce two interfering amplitudes for backscattering. Thermal fluctuations of the number of quasiparticles enclosed between the two point contacts introduce current noise, which reflects the statistics of the quasiparticles. We analyze Abelian ν=1/q states and the non-Abelian ν=5/2 state. © 2006 The American Physical Society.Crossover from conserving to lossy transport in circular random-matrix ensembles.
Phys Rev Lett 96:13 (2006) 136805
Abstract:
In a quantum dot with three leads, the transmission matrix t12 between two of these leads is a truncation of a unitary scattering matrix S, which we treat as random. As the number of channels in the third lead is increased, the constraints from the symmetry of S become less stringent and t12 becomes closer to a matrix of complex Gaussian random numbers with no constraints. We consider the distribution of the singular values of t12, which is related to a number of physical quantities.Reentrant anisotropic phases in a two-dimensional hole system
(2006)
Polarized MIMO channels in 3-D: Models, measurements and mutual information
IEEE Journal on Selected Areas in Communications 24:3 (2006) 514-526
Abstract:
Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase in spectrum efficiency (and, hence, capacity) over current wireless systems. Recently, an explosion of multiple-input-multiple-output (MIMO) studies have appeared with many journals presenting special issues on this subject. This has occurred due to the potential of MIMO to provide a linear increase in capacity with antenna numbers. Environmental considerations and tower loads will often restrict the placing of large antenna spans on base stations (BSs). Similarly, customer device form factors also place a limit on the antenna numbers that can be placed with a mutual spacing of 0.5 wavelength. The use of cross-polarized antennas is widely used in modern cellular installations as it reduces spacing needs and tower loads on BSs. Hence, this approach is also receiving considerable attention in MIMO systems. In order to study and compare various receiver architectures that are based on MIMO techniques, one needs to have an accurate knowledge of the MIMO channel. However, very few studies have appeared that characterize the cross-polarized MIMO channel. Recently, the third-generation partnership standards bodies (3GPP/3GPP2) have defined a cross-polarized channel model for MIMO systems but this model neglects the elevation spectrum. In this paper, we provide a deeper understanding of the channel model for cross-polarized systems for different environments and propose a composite channel impulse model for the cross-polarized channel that takes into account both azimuth and elevation spectrum. We use the resulting channel impulse response to derive closed-form expressions for the spatial correlation. We also present models to describe the dependence of cross-polarization discrimination (XPD) on distance, azimuth and elevation and delay spread. In addition, we study the impact of array width, signal-to-noise ratio, and antenna slant angle on the mutual information (MI) of the system. In particular, we present an analytical model for large system mean mutual information values and consider the impact of elevation spectrum on MI. Finally, the impact of multipath delays on XPD and MI is also explored. © 2006 IEEE.Nonlinear dynamics of a dense two-dimensional dipolar exciton gas
Physical Review B - Condensed Matter and Materials Physics 73:3 (2006)