Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

Switching noise as a probe of statistics in the fractional quantum Hall effect

Physical Review Letters 96:22 (2006)

Authors:

E Grosfeld, SH Simon, A Stern

Abstract:

We propose an experiment to probe the unconventional quantum statistics of quasiparticles in fractional quantum Hall states by measurement of current noise. The geometry we consider is that of a Hall bar where two quantum point contacts introduce two interfering amplitudes for backscattering. Thermal fluctuations of the number of quasiparticles enclosed between the two point contacts introduce current noise, which reflects the statistics of the quasiparticles. We analyze Abelian ν=1/q states and the non-Abelian ν=5/2 state. © 2006 The American Physical Society.
More details from the publisher
More details
More details

Crossover from conserving to lossy transport in circular random-matrix ensembles.

Phys Rev Lett 96:13 (2006) 136805

Authors:

Steven H Simon, Aris L Moustakas

Abstract:

In a quantum dot with three leads, the transmission matrix t12 between two of these leads is a truncation of a unitary scattering matrix S, which we treat as random. As the number of channels in the third lead is increased, the constraints from the symmetry of S become less stringent and t12 becomes closer to a matrix of complex Gaussian random numbers with no constraints. We consider the distribution of the singular values of t12, which is related to a number of physical quantities.
More details from the publisher
More details
Details from ArXiV

Reentrant anisotropic phases in a two-dimensional hole system

(2006)

Authors:

MJ Manfra, Z Jiang, SH Simon, LN Pfeiffer, KW West, AM Sergent
More details from the publisher
Details from ArXiV

Polarized MIMO channels in 3-D: Models, measurements and mutual information

IEEE Journal on Selected Areas in Communications 24:3 (2006) 514-526

Authors:

M Shafi, M Zhang, AL Moustakas, PJ Smith, AF Molisch, F Tufvesson, SH Simon

Abstract:

Fourth-generation (4G) systems are expected to support data rates of the order of 100 Mb/s in the outdoor environment and 1 Gb/s in the indoor/stationary environment. In order to support such large payloads, the radio physical layer must employ receiver algorithms that provide a significant increase in spectrum efficiency (and, hence, capacity) over current wireless systems. Recently, an explosion of multiple-input-multiple-output (MIMO) studies have appeared with many journals presenting special issues on this subject. This has occurred due to the potential of MIMO to provide a linear increase in capacity with antenna numbers. Environmental considerations and tower loads will often restrict the placing of large antenna spans on base stations (BSs). Similarly, customer device form factors also place a limit on the antenna numbers that can be placed with a mutual spacing of 0.5 wavelength. The use of cross-polarized antennas is widely used in modern cellular installations as it reduces spacing needs and tower loads on BSs. Hence, this approach is also receiving considerable attention in MIMO systems. In order to study and compare various receiver architectures that are based on MIMO techniques, one needs to have an accurate knowledge of the MIMO channel. However, very few studies have appeared that characterize the cross-polarized MIMO channel. Recently, the third-generation partnership standards bodies (3GPP/3GPP2) have defined a cross-polarized channel model for MIMO systems but this model neglects the elevation spectrum. In this paper, we provide a deeper understanding of the channel model for cross-polarized systems for different environments and propose a composite channel impulse model for the cross-polarized channel that takes into account both azimuth and elevation spectrum. We use the resulting channel impulse response to derive closed-form expressions for the spatial correlation. We also present models to describe the dependence of cross-polarization discrimination (XPD) on distance, azimuth and elevation and delay spread. In addition, we study the impact of array width, signal-to-noise ratio, and antenna slant angle on the mutual information (MI) of the system. In particular, we present an analytical model for large system mean mutual information values and consider the impact of elevation spectrum on MI. Finally, the impact of multipath delays on XPD and MI is also explored. © 2006 IEEE.
More details from the publisher
More details

Nonlinear dynamics of a dense two-dimensional dipolar exciton gas

Physical Review B - Condensed Matter and Materials Physics 73:3 (2006)

Authors:

R Rapaport, G Chen, SH Simon

Abstract:

We use a simple model to describe the nonlinear dynamics of a dense two-dimensional dipolar exciton gas. The model predicts an initial fast expansion due to effective dipole pressure, followed by a much slower diffusion. The model is in very good agreement with recent experimental results. We show that the dipole-pressure-induced expansion strongly constrains the time available for achieving and observing Bose-Einstein quantum statistical effects, indicating a need for spatial exciton traps. We also suggest that nonlinear ballistic exciton transport due to the strong internal dipole pressure is readily achievable. © 2006 The American Physical Society.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • Current page 55
  • Page 56
  • Page 57
  • Page 58
  • Page 59
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet