Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

Satellite Survival in Highly Resolved Milky Way Class Halos

(2012)

Authors:

Sam Geen, Adrianne Slyz, Julien Devriendt
More details from the publisher

Self-regulated growth of supermassive black holes by a dual jet-heating active galactic nucleus feedback mechanism: Methods, tests and implications for cosmological simulations

Monthly Notices of the Royal Astronomical Society 420:3 (2012) 2662-2683

Authors:

Y Dubois, J Devriendt, A Slyz, R Teyssier

Abstract:

We develop a subgrid model for the growth of supermassive black holes (BHs) and their associated active galactic nucleus (AGN) feedback in hydrodynamical cosmological simulations. This model transposes previous attempts to describe BH accretion and AGN feedback with the smoothed particle hydrodynamics (SPH) technique to the adaptive mesh refinement framework. It also furthers their development by implementing a new jet-like outflow treatment of the AGN feedback which we combine with the heating mode traditionally used in the SPH approach. Thus, our approach allows one to test the robustness of the conclusions derived from simulating the impact of self-regulated AGN feedback on galaxy formation vis-à-vis the numerical method. Assuming that BHs are created in the early stages of galaxy formation, they grow by mergers and accretion of gas at a Eddington-limited Bondi accretion rate. However this growth is regulated by AGN feedback which we model using two different modes: a quasar-heating mode when accretion rates on to the BHs are comparable to the Eddington rate, and a radio-jet mode at lower accretion rates which not only deposits energy, but also deposits mass and momentum on the grid. In other words, our feedback model deposits energy as a succession of thermal bursts and jet outflows depending on the properties of the gas surrounding the BHs. We assess the plausibility of such a model by comparing our results to observational measurements of the co-evolution of BHs and their host galaxy properties, and check their robustness with respect to numerical resolution. We show that AGN feedback must be a crucial physical ingredient for the formation of massive galaxies as it appears to be able to efficiently prevent the accumulation of and/or expel cold gas out of haloes/galaxies and significantly suppress star formation. Our model predicts that the relationship between BHs and their host galaxy mass evolves as a function of redshift, because of the vigorous accretion of cold material in the early Universe that drives Eddington-limited accretion on to BHs. Quasar activity is also enhanced at high redshift. However, as structures grow in mass and lose their cold material through star formation and efficient BH feedback ejection, the AGN activity in the low-redshift Universe becomes more and more dominated by the radio mode, which powers jets through the hot circumgalactic medium. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
More details from the publisher

Connecting the cosmic web to the spin of dark halos: implications for galaxy formation

ArXiv 1201.5794 (2012)

Authors:

Sandrine Codis, Christophe Pichon, Julien Devriendt, Adrianne Slyz, Dmitry Pogosyan, Yohan Dubois, Thierry Sousbie

Abstract:

We investigate the alignment of the spin of dark matter halos relative (i) to the surrounding large-scale filamentary structure, and (ii) to the tidal tensor eigenvectors using the Horizon 4pi dark matter simulation which resolves over 43 million dark matter halos at redshift zero. We detect a clear mass transition: the spin of dark matter halos above a critical mass tends to be perpendicular to the closest filament, and aligned with the intermediate axis of the tidal tensor, whereas the spin of low-mass halos is more likely to be aligned with the closest filament. Furthermore, this critical mass of 5 10^12 is redshift-dependent and scales as (1+z)^-2.5. We propose an interpretation of this signal in terms of large-scale cosmic flows. In this picture, most low-mass halos are formed through the winding of flows embedded in misaligned walls; hence they acquire a spin parallel to the axis of the resulting filaments forming at the intersection of these walls. On the other hand, more massive halos are typically the products of later mergers along such filaments, and thus they acquire a spin perpendicular to this direction when their orbital angular momentum is converted into spin. We show that this scenario is consistent with both the measured excess probabilities of alignment w.r.t. the eigen-directions of the tidal tensor, and halo merger histories. On a more qualitative level, it also seems compatible with 3D visualization of the structure of the cosmic web as traced by "smoothed" dark matter simulations or gas tracer particles. Finally, it provides extra support to the disc forming paradigm presented by Pichon et al (2011) as it extends it by characterizing the geometry of secondary infall at high redshift.
Details from ArXiV
More details from the publisher
Details from ORA
More details

Connecting the cosmic web to the spin of dark halos: implications for galaxy formation

(2012)

Authors:

Sandrine Codis, Christophe Pichon, Julien Devriendt, Adrianne Slyz, Dmitry Pogosyan, Yohan Dubois, Thierry Sousbie
More details from the publisher

Feeding compact bulges and supermassive black holes with low angular momentum cosmic gas at high redshift

Monthly Notices of the Royal Astronomical Society 423:4 (2012) 3616-3630

Authors:

Y Dubois, C Pichon, M Haehnelt, T Kimm, A Slyz, J Devriendt, D Pogosyan

Abstract:

We use cosmological hydrodynamical simulations to show that a significant fraction of the gas in high redshift rare massive haloes falls nearly radially to their very centre on extremely short time-scales. This process results in the formation of very compact bulges with specific angular momentum a factor of 5-30 smaller than the average angular momentum of the baryons in the whole halo. Such low angular momentum originates from both segregation and effective cancellation when the gas flows to the centre of the halo along well-defined cold filamentary streams. These filaments penetrate deep inside the halo and connect to the bulge from multiple rapidly changing directions. Structures falling in along the filaments (satellite galaxies) or formed by gravitational instabilities triggered by the inflow (star clusters) further reduce the angular momentum of the gas in the bulge. Finally, the fraction of gas radially falling to the centre appears to increase with the mass of the halo; we argue that this is most likely due to an enhanced cancellation of angular momentum in rarer haloes which are fed by more isotropically distributed cold streams. Such an increasingly efficient funnelling of low angular momentum gas to the centre of very massive haloes at high redshift may account for the rapid pace at which the most massive supermassive black holes grow to reach observed masses around 109M⊙ at an epoch when the Universe is barely 1 Gyr old. © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 30
  • Page 31
  • Page 32
  • Page 33
  • Current page 34
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet