Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

The angular momentum of baryons and dark matter halos revisited

ArXiv 1106.0538 (2011)

Authors:

Taysun Kimm, Julien Devriendt, Adrianne Slyz, Christophe Pichon, Susan A Kassin, Yohan Dubois

Abstract:

Recent theoretical studies have shown that galaxies at high redshift are fed by cold, dense gas filaments, suggesting angular momentum transport by gas differs from that by dark matter. Revisiting this issue using high-resolution cosmological hydrodynamics simulations with adaptive mesh refinement, we find that at the time of accretion, gas and dark matter do carry a similar amount of specific angular momentum, but that it is systematically higher than that of the dark matter halo as a whole. At high redshift, freshly accreted gas rapidly streams into the central region of the halo, directly depositing this large amount of angular momentum within a sphere of radius r=0.1rvir. In contrast, dark matter particles pass through the central region unscathed, and a fraction of them ends up populating the outer regions of the halo (r/rvir>0.1), redistributing angular momentum in the process. As a result, large-scale motions of the cosmic web have to be considered as the origin of gas angular momentum rather than its virialised dark matter halo host. This generic result holds for halos of all masses at all redshifts, as radiative cooling ensures that a significant fraction of baryons remain trapped at the centre of the halos. Despite this injection of angular momentum enriched gas, we predict an amount for stellar discs which is in fair agreement with observations at z=0. This arises because the total specific angular momentum of the baryons remains close to that of dark matter halos. We propose a new scenario where gas efficiently carries the angular momentum generated by large-scale structure motions deep inside dark matter halos, redistributing it only in the vicinity of the disc.
Details from ArXiV
More details from the publisher
Details from ORA
More details

Rigging dark halos: why is hierarchical galaxy formation consistent with the inside-out build-up of thin discs?

ArXiv 1105.021 (2011)

Authors:

C Pichon, D Pogosyan, T Kimm, A Slyz, J Devriendt, Y Dubois

Abstract:

State-of-the-art hydrodynamical simulations show that gas inflow through the virial sphere of dark matter halos is focused (i.e. has a preferred inflow direction), consistent (i.e. its orientation is steady in time) and amplified (i.e. the amplitude of its advected specific angular momentum increases with time). We explain this to be a consequence of the dynamics of the cosmic web within the neighbourhood of the halo, which produces steady, angular momentum rich, filamentary inflow of cold gas. On large scales, the dynamics within neighbouring patches drives matter out of the surrounding voids, into walls and filaments before it finally gets accreted onto virialised dark matter halos. As these walls/filaments constitute the boundaries of asymmetric voids, they acquire a net transverse motion, which explains the angular momentum rich nature of the later infall which comes from further away. We conjecture that this large-scale driven consistency explains why cold flows are so efficient at building up high redshift thin discs from the inside out.
Details from ArXiV

Rigging dark halos: why is hierarchical galaxy formation consistent with the inside-out build-up of thin discs?

(2011)

Authors:

C Pichon, D Pogosyan, T Kimm, A Slyz, J Devriendt, Y Dubois
More details from the publisher

Galactic star formation in parsec-scale resolution simulations

Proceedings of the International Astronomical Union 6:S270 (2011) 487-490

Authors:

LC Powell, F Bournaud, D Chapon, J Devriendt, A Slyz, R Teyssier

Abstract:

The interstellar medium (ISM) in galaxies is multiphase and cloudy, with stars forming in the very dense, cold gas found in Giant Molecular Clouds (GMCs). Simulating the evolution of an entire galaxy, however, is a computational problem which covers many orders of magnitude, so many simulations cannot reach densities high enough or temperatures low enough to resolve this multiphase nature. Therefore, the formation of GMCs is not captured and the resulting gas distribution is smooth, contrary to observations. We investigate how star formation (SF) proceeds in simulated galaxies when we obtain parsec-scale resolution and more successfully capture the multiphase ISM. Both major mergers and the accretion of cold gas via filaments are dominant contributors to a galaxy's total stellar budget and we examine SF at high resolution in both of these contexts. © 2011 International Astronomical Union.
More details from the publisher

How AGN feedback and metal cooling shape cluster entropy profiles

ArXiv 1104.0171 (2011)

Authors:

Yohan Dubois, Julien Devriendt, Romain Teyssier, Adrianne Slyz

Abstract:

Observed clusters of galaxies essentially come in two flavors: non cool core clusters characterized by an isothermal temperature profile and a central entropy floor, and cool-core clusters where temperature and entropy in the central region are increasing with radius. Using cosmological resimulations of a galaxy cluster, we study the evolution of its intracluster medium (ICM) gas properties, and through them we assess the effect of different (sub-grid) modelling of the physical processes at play, namely gas cooling, star formation, feedback from supernovae and active galactic nuclei (AGN). More specifically we show that AGN feedback plays a major role in the pre-heating of the proto-cluster as it prevents a high concentration of mass from collecting in the center of the future galaxy cluster at early times. However, AGN activity during the cluster's later evolution is also required to regulate the mass flow into its core and prevent runaway star formation in the central galaxy. Whereas the energy deposited by supernovae alone is insufficient to prevent an overcooling catastrophe, supernovae are responsible for spreading a large amount of metals at high redshift, enhancing the cooling efficiency of the ICM gas. As the AGN energy release depends on the accretion rate of gas onto its central black hole engine, the AGN responds to this supernova enhanced gas accretion by injecting more energy into the surrounding gas, and as a result increases the amount of early pre-heating. We demonstrate that the interaction between an AGN jet and the ICM gas that regulates the growth of the AGN's BH, can naturally produce cool core clusters if we neglect metals. However, as soon as metals are allowed to contribute to the radiative cooling, only the non cool core solution is produced.
Details from ArXiV
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 33
  • Page 34
  • Page 35
  • Page 36
  • Current page 37
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet