Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

How active galactic nucleus feedback and metal cooling shape cluster entropy profiles

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 417:3 (2011) 1853-1870

Authors:

Yohan Dubois, Julien Devriendt, Romain Teyssier, Adrianne Slyz
More details from the publisher

AGN feedback using AMR cosmological simulations

ArXiv 1109.1457 (2011)

Authors:

Yohan Dubois, Julien Devriendt, Adrianne Slyz, Romain Teyssier

Abstract:

Feedback processes are thought to solve some of the long-standing issues of the numerical modelling of galaxy formation: over-cooling, low angular momentum, massive blue galaxies, extra-galactic enrichment, etc. The accretion of gas onto super-massive black holes in the centre of massive galaxies can release tremendous amounts of energy to the surrounding medium. We show, with cosmological Adaptive Mesh Refinement simulations, how the growth of black holes is regulated by the feedback from Active Galactic Nuclei using a new dual jet/heating mechanism. We discuss how this large amount of feedback is able to modify the cold baryon content of galaxies, and perturb the properties of the hot plasma in their vicinity.
Details from ArXiV
More details

AGN feedback using AMR cosmological simulations

(2011)

Authors:

Yohan Dubois, Julien Devriendt, Adrianne Slyz, Romain Teyssier
More details from the publisher

Self-regulated growth of supermassive black holes by a dual jet/heating AGN feedback mechanism: methods, tests and implications for cosmological simulations

ArXiv 1108.011 (2011)

Authors:

Yohan Dubois, Julien Devriendt, Adrianne Slyz, Romain Teyssier

Abstract:

We develop a new sub-grid model for the growth of supermassive Black Holes (BHs) and their associated Active Galactic Nuclei (AGN) feedback in hydrodynamical cosmological simulations. Assuming that BHs are created in the early stages of galaxy formation, they grow by mergers and accretion of gas at a Eddington-limited Bondi accretion rate. However this growth is regulated by AGN feedback which we model using two different modes: a quasar-heating mode when accretion rates onto the BHs are comparable to the Eddington rate, and a radio-jet mode at lower accretion rates. In other words, our feedback model deposits energy as a succession of thermal bursts and jet outflows depending on the properties of the gas surrounding the BHs. We assess the plausibility of such a model by comparing our results to observational measurements of the coevolution of BHs and their host galaxy properties, and check their robustness with respect to numerical resolution. We show that AGN feedback must be a crucial physical ingredient for the formation of massive galaxies as it appears to be the only physical mechanism able to efficiently prevent the accumulation of and/or expel cold gas out of halos/galaxies and significantly suppress star formation. Our model predicts that the relationship between BHs and their host galaxy mass evolves as a function of redshift, because of the vigorous accretion of cold material in the early Universe that drives Eddington-limited accretion onto BHs. Quasar activity is also enhanced at high redshift. However, as structures grow in mass and lose their cold material through star formation and efficient BH feedback ejection, the AGN activity in the low-redshift Universe becomes more and more dominated by the radio mode, which powers jets through the hot circum-galactic medium.
Details from ArXiV
More details from the publisher
More details

Self-regulated growth of supermassive black holes by a dual jet/heating AGN feedback mechanism: methods, tests and implications for cosmological simulations

(2011)

Authors:

Yohan Dubois, Julien Devriendt, Adrianne Slyz, Romain Teyssier
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 32
  • Page 33
  • Page 34
  • Page 35
  • Current page 36
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet