Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

Blowing cold flows away: the impact of early AGN activity on the formation of a brightest cluster galaxy progenitor

(2012)

Authors:

Yohan Dubois, Christophe Pichon, Julien Devriendt, Joseph Silk, Martin Haehnelt, Taysun Kimm, Adrianne Slyz
More details from the publisher

Blowing cold flows away: the impact of early AGN activity on the formation of a brightest cluster galaxy progenitor

ArXiv 1206.5838 (2012)

Authors:

Yohan Dubois, Christophe Pichon, Julien Devriendt, Joseph Silk, Martin Haehnelt, Taysun Kimm, Adrianne Slyz

Abstract:

Supermassive black holes (BH) are powerful sources of energy that are already in place at very early epochs of the Universe (by z=6). Using hydrodynamical simulations of the formation of a massive M_vir=5 10^11 M_sun halo by z=6 (the most massive progenitor of a cluster of M_vir=2 10^15 M_sun at z=0), we evaluate the impact of Active Galactic Nuclei (AGN) on galaxy mass content, BH self-regulation, and gas distribution inside this massive halo. We find that SN feedback has a marginal influence on the stellar structure, and no influence on the mass distribution on large scales. In contrast, AGN feedback alone is able to significantly alter the stellar-bulge mass content by quenching star formation when the BH is self-regulating, and by depleting the cold gas reservoir in the centre of the galaxy. The growth of the BH proceeds first by a rapid Eddington-limited period fed by direct cold filamentary infall. When the energy delivered by the AGN is sufficiently large to unbind the cold gas of the bulge, the accretion of gas onto the BH is maintained both by smooth gas inflow and clump migration through the galactic disc triggered by merger-induced torques. The feedback from the AGN has also a severe consequence on the baryon mass content within the halo, producing large-scale hot superwinds, able to blow away some of the cold filamentary material from the centre and reduce the baryon fraction by more than 30 per cent within the halo's virial radius. Thus in the very young universe, AGN feedback is likely to be a key process, shaping the properties of the most massive galaxies.
Details from ArXiV
More details from the publisher
Details from ORA
More details

Constraining stellar assembly and AGN feedback at the peak epoch of star formation

ArXiv 1205.3801 (2012)

Authors:

Taysun Kimm, Sugata Kaviraj, Julien Devriendt, Seth Cohen, Rogier Windhorst, Yohan Dubois, Adrianne Slyz, Nimish Hathi, Russell Ryan Jr, Robert O'Connell, Michael Dopita, Joseph Silk

Abstract:

We study stellar assembly and feedback from active galactic nuclei (AGN) around the epoch of peak star formation (1
Details from ArXiV
More details from the publisher
Details from ORA
More details

Constraining stellar assembly and AGN feedback at the peak epoch of star formation

(2012)

Authors:

Taysun Kimm, Sugata Kaviraj, Julien Devriendt, Seth Cohen, Rogier Windhorst, Yohan Dubois, Adrianne Slyz, Nimish Hathi, Russell Ryan, Robert O'Connell, Michael Dopita, Joseph Silk
More details from the publisher

Satellite Survival in Highly Resolved Milky Way Class Halos

ArXiv 1204.3327 (2012)

Authors:

Sam Geen, Adrianne Slyz, Julien Devriendt

Abstract:

Surprisingly little is known about the origin and evolution of the Milky Way's satellite galaxy companions. UV photoionisation, supernova feedback and interactions with the larger host halo are all thought to play a role in shaping the population of satellites that we observe today, but there is still no consensus as to which of these effects, if any, dominates. In this paper, we revisit the issue by re-simulating a Milky Way class dark matter (DM) halo with unprecedented resolution. Our set of cosmological hydrodynamic Adaptive Mesh Refinement (AMR) simulations, called the Nut suite, allows us to investigate the effect of supernova feedback and UV photoionisation at high redshift with sub-parsec resolution. We subsequently follow the effect of interactions with the Milky Way-like halo using a lower spatial resolution (50pc) version of the simulation down to z=0. This latter produces a population of simulated satellites that we compare to the observed satellites of the Milky Way and M31. We find that supernova feedback reduces star formation in the least massive satellites but enhances it in the more massive ones. Photoionisation appears to play a very minor role in suppressing star and galaxy formation in all progenitors of satellite halos. By far the largest effect on the satellite population is found to be the mass of the host and whether gas cooling is included in the simulation or not. Indeed, inclusion of gas cooling dramatically reduces the number of satellites captured at high redshift which survive down to z=0.
Details from ArXiV
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • Current page 33
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet