Puzzling radial gradients of K-band absorption features in the giant elliptical galaxy M87
Astronomy & Astrophysics EDP Sciences 700 (2025) a64
Abstract:
We present new K -band spectroscopy for the giant elliptical galaxy M87 in the Virgo cluster, taken with the Large Binocular Telescope Utility Camera in the Infrared (LUCI) spectrograph at the Large Binocular Telescope (LBT). The new data are used to study line strengths of K -band absorption features from different chemical species, namely Fe, Mg, Ca, Na, and CO, as a function of galactocentric distance, out to ∼40″ from the center (about half of the galaxy effective radius). The radial trends of spectral indices are compared to those for the bulge of M31, observed with the same instrument. For M87, most K -band indices exhibit flat radial profiles, with the exception of NaI2.21, which decreases outward, with a negative radial gradient. Significant offsets are found between indices for M87 and those for the bulge of M31, the latter having weaker line strengths for almost all features, but Fe and Ca, for which we find similar trends in both systems. We find that the behavior of CO features – most prominent in giant stars – is difficult to explain, consistent with previous results for the central regions of massive galaxies. In particular, the CO indices are stronger in M87 than M31, and do not exhibit significant radial gradients in M87, despite its IMF being bottom heavier than M31 especially in its central region. Predictions of state-of-the-art stellar population models, based on results from the optical spectral range, are able to match only the Na and Ca indices of M87, while a significant mismatch is found for all other indices. This shows that state-of-the-art stellar population models should be improved significantly in order to provide reliable constraints on the stellar population content of galaxies in the near-infrared spectral range.Optical+Near-IR Analysis of a Newly Confirmed Einstein Ring at z ∼ 1 from the Kilo-Degree Survey: Dark Matter Fraction, Total and Dark Matter Density Slope, and Initial Mass Function * * Based on observations with OmegaCam@VST, VIRCAM@VISTA, HAWK-I, and XSHOOTER@VLT (Prog. ID: 107.22S8)
The Astrophysical Journal Letters American Astronomical Society 987:2 (2025) L31
Abstract:
We report the spectroscopic confirmation of a bright blue Einstein ring in the Kilo-Degree Survey (KiDS) footprint: the Einstein “blue eye.” Spectroscopic data from X-Shooter at the Very Large Telescope (VLT) show that the lens is a typical early-type galaxy (ETG) at zl = 0.9906, while the background source is a Lyα emitter at zs = 2.823. The reference lens modeling was performed on a high-resolution Y-band adaptive-optics image from HAWK-I at VLT. Assuming a singular isothermal ellipsoid total mass density profile, we inferred an Einstein radius REin = 10.47 ± 0.06 kpc. The average slope of the total mass density inside the Einstein radius, as determined by a joint analysis of lensing and isotropic Jeans equations, is γtot=2.14−0.07+0.06 , showing no systematic deviation from the slopes of lower-redshift galaxies. This can be the evidence of ETGs developing through dry mergers plus moderate dissipationless accretion. Stellar population analysis with eight-band (griZYJHKs) photometries from KiDS and VIKING shows that the total stellar mass of the lens is M* = (3.95 ± 0.35) × 1011 M⊙ (Salpeter initial mass function (IMF)), implying a dark matter fraction inside the effective radius of fDM = 0.307 ± 0.151. We finally explored the dark matter halo slope and found a strong degeneracy with the dynamic stellar mass. Dark matter adiabatic contraction is needed to explain the posterior distribution of the slope, unless an IMF heavier than Salpeter is assumed.TP-AGB stars and stellar population properties of a post-starburst galaxy at z ∼ 2 through optical and near-infrared spectroscopy with JWST
Astronomy & Astrophysics EDP Sciences 699 (2025) a203
Abstract:
We present a detailed optical and near-IR (NIR) spectral analysis of J-138717, a post-starburst galaxy at z = 1.8845 observed with JWST/NIRSpec, for which we derive a stellar mass of 3.5±0.2×10 10 M ⊙ and a stellar velocity dispersion of 198±10 km s −1 . We estimate an age of ∼0.9 Gyr and a subsolar metallicity (between −0.4 and −0.2 dex). We find generally consistent results when we fit the optical and NIR wavelength ranges separately or with different model libraries. The reconstruction of the star formation history indicates that the galaxy assembled most of its mass quickly and then quenched rapidly, ∼0.4 Gyr before the observation. Line diagnostics suggest that the weak emission is probably powered by residual star formation (star formation rate ∼0.2 M ⊙ yr −1 ) or a low-luminosity active galactic nucleus, without strong evidence for outflows in ionized or neutral gas. We performed a detailed study of the NIR spectral indices by comparing observations with predictions of several current stellar population models. This is unprecedented at this high redshift. In particular, the analysis of several CO and CN features argues against a strong contribution of thermally pulsating (TP) asymptotic giant branch (AGB) stars. The observations agree better with models that include very little contribution from TP-AGB stars, but they are also consistent with a mild contribution from TP-AGB stars when a younger age, consistent with the fits, is assumed. The analysis of other NIR spectral indices shows that current models struggle to reproduce the observations. This highlights the need for improved stellar population models in the NIR, especially at young ages and low metallicities. This is most relevant for studying high-redshift galaxies in the era of the JWST.INSPIRE: INvestigating Stellar Populations In RElics – IX. KiDS J0842 + 0059: the first fully confirmed relic beyond the local Universe
Monthly Notices of the Royal Astronomical Society Oxford University Press 540:3 (2025) 2555-2565
Abstract:
Relics are massive, compact and quiescent galaxies that assembled the majority of their stars in the early Universe and lived untouched until today, completely missing any subsequent size growth caused by mergers and interactions. They provide the unique opportunity to put constraints on the first phase of mass assembly in the Universe with the ease of being nearby. While only a few relics have been found in the local Universe, the INSPIRE project has confirmed 38 relics at higher redshifts (), fully characterizing their integrated kinematics and stellar populations. However, given the very small sizes of these objects and the limitations imposed by the atmosphere, structural parameters inferred from ground-based optical imaging are possibly affected by systematic effects that are difficult to quantify. In this paper, we present the first high-resolution image obtained with Adaptive Optics Ks-band observations on SOUL-LUCI@LBT of one of the most extreme INSPIRE relics, KiDS J0842 + 0059 at . We confirm the discy morphology of this galaxy (axis ratio of 0.24) and its compact nature (circularized effective radius of kpc) by modelling its 2D surface brightness profile with a point-spread function-convolved Sérsic model. We demonstrate that the surface mass density profile of KiDS J0842 + 0059 closely resembles that of the most extreme local relic, NGC 1277, as well as of high-redshift red nuggets. We unambiguously conclude that this object is a remnant of a high-redshift compact and massive galaxy, which assembled all of its mass at , and completely missed the merger phase of the galaxy evolution at high redshift.E-INSPIRE – I. Bridging the gap with the local Universe: stellar population of a statistical sample of ultra-compact massive galaxies at z < 0.3
Monthly Notices of the Royal Astronomical Society Oxford University Press 541:3 (2025) 2440-2458