Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Matthias Tecza

HARMONI Instrument Scientist

Research theme

  • Astronomy and astrophysics
  • Instrumentation

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
  • Extremely Large Telescope
matthias.tecza@physics.ox.ac.uk
Telephone: 01865 (2)73364
Denys Wilkinson Building, room 361G
  • About
  • Teaching
  • Publications

New Photometry and Spectra of AB Doradus C: An Accurate Mass Determination of a Young Low-Mass Object with Theoretical Evolutionary Tracks

ArXiv astro-ph/0703564 (2007)

Authors:

Laird M Close, Niranjan Thatte, Eric L Nielsen, Roberto Abuter, Fraser Clarke, Matthias Tecza

Abstract:

We present new photometric and spectroscopic measurements for the unique, young, low-mass evolutionary track calibrator AB Dor C. While the new Ks photometry is similar to that previously published in Close et al. (2005) the spectral type is found to be earlier. Based on new H & K IFS spectra of AB Dor C (Thatte et al. 2007; paper 1) we adopt a spectral type of M5.5+/-1.0 for AB Dor C. This is considerably earlier than the M8+/-1 estimated in Close et al. (2005) and Nielsen et al. (2005) yet is consistent with the M6+/-1 independently derived by Luhman & Potter (2005). However, the spectrum presented in paper 1 and analyzed here is a significant improvement over any previous spectrum of AB Dor C. We also present new astrometry for the system which further supports a 0.090+/-0.005 Msun mass for the system. Once armed with an accurate spectrum and Ks flux we find L=0.0021+/-0.0005 Lsun and Teff=2925{+170}{-145}K for AB Dor C. These values are consistent with a ~75 Myr 0.090+/-0.005 Msun object like AB Dor C according to the DUSTY evolutionary tracks (Chabrier et al. 2000). Hence masses can be estimated from the HR diagram with the DUSTY tracks for young low-mass objects like AB Dor C. However, we cautiously note that underestimates of the mass from the tracks can occur if one lacks a proper (continuum preserved) spectra or is relying on NIR fluxes alone.
Details from ArXiV
More details from the publisher
More details

Intense star formation and feedback at high redshift: Spatially resolved properties of the z = 2.6 submillimeter galaxy SMM J14011+02521

Astrophysical Journal 657:2 I (2007) 725-737

Authors:

NPH Nesvadba, MD Lehnert, R Genzel, F Eisenhauer, AJ Baker, S Seitz, R Davies, D Lutz, L Tacconi, M Tecza, R Bender, R Abuter

Abstract:

We present a detailed analysis of the spatially resolved properties of the lensed submillimeter galaxy (SMG) SMM J14011+0252 atz = 2.56, combining deep near-infrared integral-field data obtained with SPIFFI on the VLT with other multiwavelength data sets. As previously discussed by other authors, the broad characteristics of SMM J14011+0252 in particular and submillimeter galaxies in general are in agreement with what is expected for the early evolution of local massive spheroidal galaxies. From continuum and line flux, velocity, and dispersion maps, we measure the kinematics, star formation rates, gas densities, and extinction for individual subcomponents. The star formation intensity is similar to low-redshift "maximal starbursts," while the line fluxes and the dynamics of the emission line gas provide direct evidence for a starburst-driven wind with physical properties very similar to local superwinds. We also find circumstantial evidence for "self-regulated" star formation within J1. The relative velocity of the bluer companion J2 yields a dynamical mass estimate for J1 within ∼20 kpc of Mdyn ∼ 1 × 1011 M⊙. The relative metallicity of J2 is 0.4 dex lower than in J1n/J1s, suggesting different star formation histories. Spectral energy distribution fitting of the continuum peak J1c confirms and substantiates previous suggestions that this component is a z = 0.25 interloper. When removing J1c, the stellar continuum and Hα line emission appear well aligned spatially in two individual components, J1n and J1s, and coincide with two kinematically distinct regions in the velocity map, which might well indicate a merging system. This highlights the close similarity between SMGs and ultraluminous infrared galaxies (ULIRGs), which are often mergerdriven maximal starbursts, and suggests that the intrinsic mechanisms of star formation and related feedback are in fact similar to low-redshift strongly star-forming systems. © 2007. The American Astronomical Society. All rights reserved.
More details from the publisher

Cryogenic temperature-dependent refractive index measurements of N-BK7, BaLKN3, SF15, and E-SF03 - art. no. 669205

P SOC PHOTO-OPT INS 6692 (2007) 69205-69205

Authors:

BJ Frey, DB Leviton, TJ Madison, Q Gong, M Tecza

Abstract:

In order to enable high quality lens designs using N-BK7, BaLKN3, SF15, and E-SF03 at cryogenic temperatures, we have measured the absolute refractive index of prisms of these four materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For N-BK7, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 50 to 300 K at wavelengths from 0.45 to 2.7 mu m; for BaLKN3 we cover temperatures ranging from 40 to 300 K and wavelengths from 0.4 to 2.6 mu m; for SF15 we cover temperatures ranging from 50 to 300 K and wavelengths from 0.45 to 2.6 mu m; for E-SF03 we cover temperatures ranging from 30 to 300 K and wavelengths from 0.45 to 2.8 mu m. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. While we generally find good agreement (+/-2 x 10(-4) for N-BK7, +/-4 x 10(-4) for E-SF03, <1X10(-4) for the other materials) at room temperature between our measured values and those provided by the vendor, there is some variation between the datasheets provided with the prisms we measured and the catalog values published by the vendor. This underlines the importance of measuring the absolute refractive index of the material when precise knowledge of the refractive index is required.
More details from the publisher
More details

Intense Star-formation and Feedback at High Redshift: Spatially-resolved Properties of the z=2.6 Submillimeter Galaxy SMMJ14011+0252

ArXiv astro-ph/0611769 (2006)

Authors:

NPH Nesvadba, MD Lehnert, R Genzel, F Eisenhauer, AJ Baker, S Seitz, R Davies, D Lutz, L Tacconi, M Tecza, R Bender, R Abuter

Abstract:

We present a detailed analysis of the spatially-resolved properties of the lensed submillimeter galaxy SMMJ14011+0252 at z=2.56, combining deep near-infrared integral-field data obtained with SPIFFI on the VLT with other multi-wavelength data sets. The broad characteristics of SMMJ14011+0252 are in agreement with what is expected for the early evolution of local massive spheroidal galaxies. From continuum and line flux, velocity, and dispersion maps, we measure the kinematics, star-formation rates, gas densities, and extinction for individual subcomponents. The star formation intensity is similar to low-redshift ``maximal starbursts'', while the line fluxes and the dynamics of the emission line gas provide direct evidence for a starburst-driven wind with physical properties very similar to local superwinds. We also find circumstantial evidence for "self-regulated" star formation within J1. The relative velocity of the bluer companion J2 yields a dynamical mass estimate for J1 within about 20 kpc, M_dyn \sim 1\times 10^{11} M_sun. The relative metallicity of J2 is 0.4 dex lower than in J1n/s, suggesting different star formation histories. SED fitting of the continuum peak J1c confirms and substantiates previous suggestions that this component is a z=0.25 interloper. When removing J1c, the stellar continuum and H-alpha line emission appear well aligned spatially in two individual components J1n and J1s, and coincide with two kinematically distinct regions in the velocity map, which might well indicate a merging system. This highlights the close similarity between SMGs and ULIRGs, which are often merger-driven maximal starbursts, and suggests that the intrinsic mechanisms of star-formation and related feedback are similar to low-redshift strongly star-forming systems.
Details from ArXiV
More details from the publisher
More details

Extreme gas kinematics in the z=2.2 powerful radio galaxy MRC1138-262: Evidence for efficient AGN feedback in the early Universe?

ArXiv astro-ph/0606530 (2006)

Authors:

NPH Nesvadba, MD Lehnert, F Eisenhauer, A Gilbert, M Tecza, R Abuter

Abstract:

To explain the properties of the most massive low-redshift galaxies and the shape of their mass function, recent models of galaxy evolution include strong AGN feedback to complement starburst-driven feedback in massive galaxies. Using the near-infrared integral-field spectrograph SPIFFI on the VLT, we searched for direct evidence for such a feedback in the optical emission line gas around the z=2.16 powerful radio galaxy MRC1138-262, likely a massive galaxy in formation. The kpc-scale kinematics, with FWHMs and relative velocities <= 2400 km/s and nearly spherical spatial distribution, do not resemble large-scale gravitational motion or starburst-driven winds. Order-of-magnitude timescale and energy arguments favor the AGN as the only plausible candidate to accelerate the gas, with a total energy injection of a few x 10^60 ergs or more, necessary to power the outflow, and relatively efficient coupling between radio jet and ISM. Observed outflow properties are in gross agreement with the models, and suggest that AGN winds might have a similar, or perhaps larger, cosmological significance than starburst-driven winds, if MRC1138-262 is indeed archetypal. Moreover, the outflow has the potential to remove significant gas fractions (<= 50%) from a >L* galaxy within a few 10 to 100 Myrs, fast enough to preserve the observed [alpha/Fe] overabundance in massive galaxies at low redshift. Using simple arguments, it appears that feedback like that observed in MRC1138-262 may have sufficient energy to inhibit material from infalling into the dark matter halo and thus regulate galaxy growth as required in some recent models of hierarchical structure formation.
Details from ArXiV
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 21
  • Page 22
  • Page 23
  • Page 24
  • Current page 25
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet