The Oxford SWIFT integral field spectrograph - art. no. 62693L
P SOC PHOTO-OPT INS 6269 (2006) L2693-L2693
Abstract:
We present the design of the Oxford SWIFT integral field spectrograph, a dedicated I and z band instrument (0.65 mu m - 1.0 mu m at R similar to 4000), designed to be used in conjunction with the Palomar laser guide star adaptive optics system (PALAO, and its planned upgrade PALM-3000). It builds on two recent developments (i) the improved ability of second generation adaptive optics systems to correct for atmospheric turbulence at wavelengths <= 1 mu m, and (ii) the availability of CCD array detectors with high quantum efficiency at very red wavelengths (close to the silicon band edge). Combining these with a state-of-the-art integral field unit design using an all-glass image slicer, SWIFT's design provides very high throughput and low scattered light.SWIFT simultaneously provides spectra of similar to 4000 spatial elements, arranged in a rectangular field-of-view of 44 x 89 pixels. It has three on-the-fly selectable pixel scales of 0."24, 0."16 and 0."08. First light is expected in spring 2008.Submillimeter galaxies as tracers of mass assembly at large M
ESO ASTROPHY SYMP (2005) 112-118
Data reduction software for the VLT integral field spectrometer SPIFFI
ASTR SOC P 314 (2004) 380-383
Abstract:
A data reduction software package is developed to reduce data of the near-IR integral field spectrometer SPIFFI built at MPE. The basic data reduction routines are coded in ANSI C. The high level scripting language Python is used to connect the C-routines allowing fast prototyping. Several Python scripts are written to produce the needed calibration data and to generate the final result, a wavelength calibrated data cube with the instrumental signatures removed.Design study for the KMOS spectrograph module
P SOC PHOTO-OPT INS 5492 (2004) 1395-1402
Abstract:
We present the results of a design study for the spectrograph module for KMOS - a cryogenic near-infrared multi-object spectrograph being developed as a second generation instrument for the VLT by a consortium of UK and German institutes. KMOS will consist of 24 deployable integral field units feeding three identical spectrograph units via image slicers. The spectrographs are designed to provide a resolving power greater than 3000, so as to provide adequate OH avoidance, whilst covering one of the J, H or K bands within a single exposure. We present the opto-mechanical layout of the spectrographs, together with an analysis of the impact of the image quality (and PSF uniformity) on the accuracy of sky background subtraction within each IFU's field of view.First results from SPIFFI. I: The Galactic Center
ASTRON NACHR 325:2 (2004) 88-91