Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Matthias Tecza

HARMONI Instrument Scientist

Research theme

  • Astronomy and astrophysics
  • Instrumentation

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
  • Extremely Large Telescope
matthias.tecza@physics.ox.ac.uk
Telephone: 01865 (2)73364
Denys Wilkinson Building, room 361G
  • About
  • Teaching
  • Publications

The Oxford SWIFT integral field spectrograph - art. no. 62693L

P SOC PHOTO-OPT INS 6269 (2006) L2693-L2693

Authors:

N Thatte, M Tecza, F Clarke, T Goodsall, J Lynn, D Freeman, RL Davies

Abstract:

We present the design of the Oxford SWIFT integral field spectrograph, a dedicated I and z band instrument (0.65 mu m - 1.0 mu m at R similar to 4000), designed to be used in conjunction with the Palomar laser guide star adaptive optics system (PALAO, and its planned upgrade PALM-3000). It builds on two recent developments (i) the improved ability of second generation adaptive optics systems to correct for atmospheric turbulence at wavelengths <= 1 mu m, and (ii) the availability of CCD array detectors with high quantum efficiency at very red wavelengths (close to the silicon band edge). Combining these with a state-of-the-art integral field unit design using an all-glass image slicer, SWIFT's design provides very high throughput and low scattered light.SWIFT simultaneously provides spectra of similar to 4000 spatial elements, arranged in a rectangular field-of-view of 44 x 89 pixels. It has three on-the-fly selectable pixel scales of 0."24, 0."16 and 0."08. First light is expected in spring 2008.
More details from the publisher
More details

Submillimeter galaxies as tracers of mass assembly at large M

ESO ASTROPHY SYMP (2005) 112-118

Authors:

R Genzel, AJ Baker, RJ Ivison, F Bertoldi, AW Blain, SC Chapman, P Cox, RI Davies, F Eisenhauer, DT Frayer, S Seitz, I Smail, LJ Tacconi, M Tecza, NA Thatte, R Bender
More details from the publisher
Details from ArXiV

Data reduction software for the VLT integral field spectrometer SPIFFI

ASTR SOC P 314 (2004) 380-383

Authors:

J Schreiber, F Eisenhauer, M Tecza, R Abuter, M Horrobin, N Thatte

Abstract:

A data reduction software package is developed to reduce data of the near-IR integral field spectrometer SPIFFI built at MPE. The basic data reduction routines are coded in ANSI C. The high level scripting language Python is used to connect the C-routines allowing fast prototyping. Several Python scripts are written to produce the needed calibration data and to generate the final result, a wavelength calibrated data cube with the instrumental signatures removed.
More details

Design study for the KMOS spectrograph module

P SOC PHOTO-OPT INS 5492 (2004) 1395-1402

Authors:

M Tecza, N Thatte, I Lewis, J Lynn, W Lau, S Yang, I Tosh, M Wells

Abstract:

We present the results of a design study for the spectrograph module for KMOS - a cryogenic near-infrared multi-object spectrograph being developed as a second generation instrument for the VLT by a consortium of UK and German institutes. KMOS will consist of 24 deployable integral field units feeding three identical spectrograph units via image slicers. The spectrographs are designed to provide a resolving power greater than 3000, so as to provide adequate OH avoidance, whilst covering one of the J, H or K bands within a single exposure. We present the opto-mechanical layout of the spectrographs, together with an analysis of the impact of the image quality (and PSF uniformity) on the accuracy of sky background subtraction within each IFU's field of view.
More details from the publisher

First results from SPIFFI. I: The Galactic Center

ASTRON NACHR 325:2 (2004) 88-91

Authors:

M Horrobin, F Eisenhauer, M Tecza, N Thatte, R Genzel, R Abuter, C Iserlohe, J Schreiber, A Schegerer, D Lutz, T Ott, R Schodel

Abstract:

In this and a companion paper (Eisenhauer et al. 2003b), we discuss some of the scientific results obtained during the SPIFFI guest instrument runs at the VLT in March and April 2003. This paper concentrates on results for the Galactic Center. Section I discusses the stellar population of the Galactic Center, in which we clearly detect, for the first time, an early, hot WN star, as well as a large number of WC stars. Analysis of the stellar population indicates that the young stars in the Galactic Center originated in a high metalicity starburst about 5 Myr ago. A surprising result is that essentially all young stars in the central 10" belong to one of two well defined, rotating stellar rings/disks. Section 2 outlines a new determination of the distance to the Galactic Center which is essentially free of systematic uncertainties in the astrophysical modelling, and gives R. as 7.94 +/- 0.42 kpc.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • Current page 27
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet