Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Caroline Terquem

Professor of Physics

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics
  • Plasma physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Exoplanets and Stellar Physics
  • Geophysical and Astrophysical Fluid Dynamics
  • Planet formation and dynamics
  • Theoretical astrophysics and plasma physics at RPC
Caroline.Terquem@physics.ox.ac.uk
Telephone: 01865 (2)73983
Rudolf Peierls Centre for Theoretical Physics, room 50.11
  • About
  • Teaching
  • Graduate Matters
  • Publications

Precession of collimated outflows from young stellar objects

(1998)

Authors:

C Terquem, J Eisloffel, J Papaloizou, R Nelson
More details from the publisher

The response of accretion disks to bending waves: angular momentum transport and resonances

(1998)
More details from the publisher

Discs and Planetary Formation

ArXiv astro-ph/9810027 (1998)

Authors:

J Papaloizou, C Terquem, R Nelson

Abstract:

The formation, structure and evolution of protoplanetary discs is considered. The formation of giant planets within the environment of these models is also discussed.
Details from ArXiV
More details

Tidally-induced warps in protostellar discs

ArXiv astro-ph/9810014 (1998)

Authors:

C Terquem, J Papaloizou, R Nelson

Abstract:

We review results on the dynamics of warped gaseous discs. We consider tidal perturbation of a Keplerian disc by a companion star orbiting in a plane inclined to the disc. The perturbation induces the precession of the disc, and thus of any jet it could drive. In some conditions the precession rate is uniform, and as a result the disc settles into a warp mode. The tidal torque also leads to the truncation of the disc, to the evolution of the inclination angle (not necessarily towards alignment of the disc and orbital planes) and to a transport of angular momentum in the disc. We note that the spectral energy distribution of such a warped disc is different from that of a flat disc. We conclude by listing observational effects of warps in protostellar discs.
Details from ArXiV
More details

Discs and Planetary Formation

(1998)

Authors:

J Papaloizou, C Terquem, R Nelson
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet