Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Caroline Terquem

Professor of Physics

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics
  • Plasma physics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Exoplanets and Stellar Physics
  • Geophysical and Astrophysical Fluid Dynamics
  • Planet formation and dynamics
  • Theoretical astrophysics and plasma physics at RPC
Caroline.Terquem@physics.ox.ac.uk
Telephone: 01865 (2)73983
Rudolf Peierls Centre for Theoretical Physics, room 50.11
  • About
  • Teaching
  • Graduate Matters
  • Publications

Precessing warped discs in close binary systems

ArXiv astro-ph/9701106 (1997)

Authors:

JCB Papaloizou, JD Larwood, RP Nelson, C Terquem

Abstract:

We describe some recent nonlinear three dimensional hydrodynamic simulations of accretion discs in binary systems where the orbit is circular and not necessarily coplanar with the disc midplane. The calculations are relevant to a number of observed astrophysical phenomena, including the precession of jets associated with young stars, the high spectral index of some T Tauri stars, and the light curves of X-ray binaries such as Hercules X-1 which suggest the presence of precessing accretion discs.
Details from ArXiV
More details
More details from the publisher

Precessing warped discs in close binary systems

(1997)

Authors:

JCB Papaloizou, JD Larwood, RP Nelson, C Terquem
More details from the publisher

Bending instabilities in magnetized accretion discs

Monthly Notices of the Royal Astronomical Society 292:3 (1997) 631-645

Authors:

V Agapitou, JCB Papaloizou, C Terquem

Abstract:

We study the global bending modes of a thin annular disc subject to both an internally generated magnetic field and a magnetic field due to a dipole embedded in the central star with axis aligned with the disc rotation axis. When there is a significant inner region of the disc corotating with the star, we find spectra of unstable bending modes. These may lead to elevation of the disc above the original symmetry plane facilitating accretion along the magnetospheric field lines. The resulting non-axisymmetric disc configuration may result in the creation of hotspots on the stellar surface and the periodic photometric variations observed in many classical T Tauri stars (CTTSs). Time-dependent behaviour may occur including the shadowing of the central source in magnetic accretors even when the dipole and rotation axes are aligned. © 1997 RAS.
More details from the publisher
More details
Details from ArXiV

On the stability of an accretion disc containing a toroidal magnetic field: The effect of resistivity

Monthly Notices of the Royal Astronomical Society 287:4 (1997) 771-789

Authors:

JCB Papaloizou, C Terquem

Abstract:

We extend a previous study of the global stability of a stratified differentially rotating disc containing a toroidal magnetic field to include the effect of a non-zero resistivity η. We consider the situation when the disc is stable to convection in the absence of the magnetic field. The most robust buoyancy driven unstable modes, which occur when the field is strong enough, have low azimuthal mode number m. They grow exponentially, apparently belonging to a discrete spectrum. They exist for the dimensionless ratio η/(H2Ω) smaller than ∼ 10-2, where Ω is the angular velocity and H is the disc semithickness. In contrast the magnetorotational modes develop arbitrarily small radial scale and show transient amplification as expected from a shearing sheet analysis. The most robust modes of this type are local in all directions. Because of their more global character, the buoyancy driven modes may be important for the generation of large-scale fields and outflows. © 1997 RAS.
More details from the publisher
More details

Precessing warped discs in close binary systems

Chapter in Accretion Disks — New Aspects, Springer Nature 487 (1997) 182-198

Authors:

JCB Papaloizou, JD Larwood, RP Nelson, C Terquem
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • Current page 19
  • Page 20
  • Page 21
  • Page 22
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet