Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Niranjan Thatte

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Instrumentation
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Exoplanets and Stellar Physics
  • Galaxy formation and evolution
  • Extremely Large Telescope
Niranjan.Thatte@physics.ox.ac.uk
Telephone: 01865 (2)73412
Denys Wilkinson Building, room 709
  • About
  • Teaching
  • Publications

Teaching Insights

Education

School is to make students 'Yearn to Learn'. College is to get students to 'Learn to Learn'

Integral-field spectroscopy of Centaurus A nucleus

Monthly Notices of the Royal Astronomical Society 374 (2007) 385-398

Authors:

N Thatte, Krajnovic, Davor, Sharp, Rob
More details from the publisher
More details
Details from ArXiV

SWIFT image slicer: Large format, compact, low scatter image slicing

Proceedings of SPIE - The International Society for Optical Engineering 6273 II (2006)

Authors:

M Tecza, N Thatte, F Clarke, T Goodsall, D Freeman, Y Salaun

Abstract:

We present the SWIFT image slicer and its novel de-magnifying design. It is based on the MPE-3D and SPIFFI image slicers, uses plane mirrors to slice the input field, but achieves a considerable de-magnification through the use of a mosaic of spherical lenses. As only plane and spherical surfaces are used in the design, classical polishing techniques can be applied to achieve very high surface accuracy and quality. This reduces aberrations and scattered light, mandatory for an image slicer working at optical wavelengths and behind an adaptive optics system. Except for the lens mosaic, the SWIFT slicer is built entirely from Zerodur and is assembled using optical contacting. We present a detailed description of the design as well as results of the early stages of its fabrication.
More details from the publisher

KMOS: A multi-object deployable-IFU spectrometer for the ESO VLT

NEW ASTRON REV 50:4-5 (2006) 370-373

Authors:

R Sharples, R Bender, R Bennett, K Burch, P Carter, P Clark, R Content, R Davies, R Davies, M Dubbeldam, R Genzel, A Hess, K Laidlaw, M Lehnert, I Lewis, B Muschielok, S Ramsey-Howat, P Rees, D Robertson, I Robson, R Saglia, M Tecza, N Thatte, S Todd, B Wall, M Wegner

Abstract:

We describe the design of a 2nd generation instrument for the ESO VLT which uses 24 cryogenic pickoff arms linked to diamond-machined image slicing integral field units to deliver a unique multiple deployable integral field capability in the near-infrared (1-2.5 mu m). The science requirements for the instrument are presented and linked to the functional specification. The baseline instrument concept is described with emphasis on technological innovations. (c) 2006 Elsevier B.V. All rights reserved.
More details from the publisher
More details

The central kinematics of NGC 1399 measured with 14 pc resolution

Monthly Notices of the Royal Astronomical Society 367 (2006) 2-18

Authors:

SJ Magorrian, R.C.W. Houghton, M. Sarzi, N. Thatte
More details from the publisher
More details
Details from ArXiV

SWIFT: An adaptive optics assisted I/z band integral field spectrograph

NEW ASTRON REV 49:10-12 (2006) 647-654

Authors:

M Tecza, N Thatte, F Clarke, T Goodsall, M Symeonidis

Abstract:

SWIFT is an adaptive optics assisted integral field spectrograph covering the I and z astronomical bands (0.7-1.0 mu m) at a spectral resolving power R <= 5000. At its heart is an all-glass image slicer with high throughput based on a novel de-magnifying design allowing a compact instrument. SWIFT profits from two recent developments: (i) the improved ability of second generation adaptive optics systems to correct for atmospheric turbulence in SWIFTS's bandpass, and (ii) the availability of CCD array detectors with high quantum efficiency at very red wavelengths. It is a dedicated integral field spectrograph, specifically built to address a range of interesting astrophysical questions. (c) 2005 Elsevier B.V. All rights reserved.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 29
  • Page 30
  • Page 31
  • Page 32
  • Current page 33
  • Page 34
  • Page 35
  • Page 36
  • Page 37
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet