Star-formation in NGC 4038/4039 from broad- and narrow band photometry: Cluster Destruction?
ArXiv astro-ph/0505445 (2005)
Abstract:
Accurately determining the star formation history in NGC 4038/4039 -- ``The Antennae'' is hampered by extinction. We therefore used near infrared images obtained with ISAAC at the VLT and with SOFI at the NTT to determine the recent star formation history in this merger. In combination with archival HST data, we determined ages, extinction and other parameters for single star clusters, and properties of the cluster population as a whole. About 70% of the K_s-band detected star clusters with masses >= 10^5 M_sun are younger than 10 Myrs (approximately an e-folding time for cluster ages), which we interpret as evidence for rapid dissolution but not free expansion. The total mass of K-band selected clusters is about 5-10x10^8 M_sun and represents about 3-6% of the total molecular gas. This takes into account only the detected clusters and in view of the rapid dissolution means that this is only a lower limit to the total mass of stars produced in clusters during the burst. Studies of cluster formation in other galaxies recently suggested short cluster dissolution timescales, too, which means that star formation rates may have been severely underestimated in the past. Extinction is strongly variable and very high in some regions, but around A_V=1.3 mag on average. Even though most clusters are detected at least in I-band, only the information about individual cluster ages and extinction allows to avoid uncertainties of orders of magnitude in star formation rate estimates determined from optical fluxes. From the distribution of individual cluster extinction vs. age, which is significantly higher for clusters below 8-9 Myr than for older clusters, we infer that this is the time by which a typical cluster blows free of its native dust cocoon.Submillimeter galaxies as tracers of mass assembly at large M
ESO ASTROPHY SYMP (2005) 112-118
Survey of a Wide Area with NACO (SWAN): Cosmology Near the VLT’s Diffraction Limit
Chapter in Science with Adaptive Optics, Springer Nature (2005) 359-365
KMOS: An infrared multiple object integral field spectrograph for the ESO VLT
Proceedings of SPIE - The International Society for Optical Engineering 5492:PART 3 (2004) 1179-1186
Abstract:
We describe the design of a 2nd generation instrument for the ESO VLT which will deliver a unique multiple deployable integral field capability in the near-infrared (1-2.5μm). The science drivers for the instrument are presented and linked to the functional specification. The baseline instrument concept is described with emphasis on technological innovations. Detailed discussions of specific technologies, and ongoing prototype studies, are described in separate papers.Unveiling the central parsec region of an active galactic nucleus: The circinus nucleus in the near-infrared with the very large telescope
Astrophysical Journal 614:1 I (2004) 135-141