Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Vlatko Vedral FInstP

Professor of Quantum Information Science

Sub department

  • Atomic and Laser Physics

Research groups

  • Frontiers of quantum physics
vlatko.vedral@physics.ox.ac.uk
Telephone: 01865 (2)72389
Clarendon Laboratory, room 241.8
  • About
  • Publications

On the quantum criticality in the ground and the thermal states of XX model

(2009)

Authors:

Wonmin Son, Vlatko Vedral
More details from the publisher

Information erasure lurking behind measures of complexity

(2009)

Authors:

Karoline Wiesner, Mile Gu, Elisabeth Rieper, Vlatko Vedral
More details from the publisher

Entanglement swapping of the valence-bond solid state with local filtering operations

(2009)

Authors:

Heng Fan, Zi-Dan Wang, Vlatko Vedral
More details from the publisher

Positive phase space transformation incompatible with classical physics.

Phys Rev Lett 102:11 (2009) 110404

Authors:

Wonmin Son, Johannes Kofler, MS Kim, Vlatko Vedral, Caslav Brukner

Abstract:

Bell conjectured that a positive Wigner function does not allow violation of the inequalities imposed by local hidden variable theories. A requirement for this conjecture is "when phase space measurements are performed." We introduce the theory-independent concept of "operationally local transformations" which refers to the change of the switch on a local measurement apparatus. We show that two separated parties, performing only phase space measurements on a composite quantum system with a positive Wigner function and performing only operationally local transformations that preserve this positivity, can nonetheless violate Bell's inequality. Such operationally local transformations are realized using entangled ancillae.
More details from the publisher
More details
Details from ArXiV

Enhancing the detection of natural thermal entanglement with disorder.

Phys Rev Lett 102:10 (2009) 100503

Authors:

Jenny Hide, Wonmin Son, Vlatko Vedral

Abstract:

Physical systems have some degree of disorder present in them. We discuss how to treat natural, thermal entanglement in any random macroscopic system from which a thermodynamic witness bounded by a constant can be found. We propose that functional many-body perturbation theory be applied to allow either a quenched or an annealed average over the disorder to be taken. We find, when considering the example of an XX Heisenberg spin chain with a random coupling strength, that the region of natural entanglement detected by both witnesses can be enhanced by the disorder.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 97
  • Page 98
  • Page 99
  • Page 100
  • Current page 101
  • Page 102
  • Page 103
  • Page 104
  • Page 105
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet